خيارات البحث
النتائج 1 - 10 من 212
Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum
2022
Negrazis, Lauren | Kidd, Karen A. | Erdozain, Maitane | Emilson, Erik J.S. | Mitchell, Carl P.J. | Gray, Michelle A.
Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1–5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ¹⁵N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.
اظهر المزيد [+] اقل [-]Accumulation of chemical elements and occurrence of microplastics in small pelagic fish from a neritic environment
2022
da Silva, Joana M. | Alves, Luís M.F. | Laranjeiro, Maria I. | Bessa, Filipa | Silva, Andreia V. | Norte, Ana C. | Lemos, Marco F.L. | Ramos, Jaime A. | Novais, Sara C. | Ceia, Filipe R.
The assessment of contaminant exposure in marine organisms often focuses on the most toxic chemical elements from upper trophic level species. Information on mid-trophic level species and particularly on potentially less harmful elements is lacking. Additionally, microplastics have been considered emergent contaminants in aquatic environments which have not been extensively studied in species from mid-trophic levels in food chains. This study aims to contribute to an overall assessment of environmental impacts of such chemicals in a community of small pelagic fish in the North Atlantic. The concentrations of 16 chemical elements, rarely simultaneously quantified (including minerals, trace elements and heavy metals), and the presence of microplastics were analysed in sardines (Sardina pilchardus) and mackerels (Scomber spp. and Trachurus trachurus) sampled along the Portuguese coast. Biochemical stress assessments and stable isotope analyses were also performed. The chemical element concentrations in S. pilchardus, T. trachurus, and Scomber spp. were relatively low and lower than the levels reported for the same species in the North Atlantic and adjacent areas. No clear relationships were found between chemical elements and oxidative damage in fish. However, the concentration of several chemical elements showed differences among species, being related with the species’ habitat use, trophic niches, and specific feeding strategies. The presence of plastic pieces in the stomachs of 29% of the sampled fishes is particularly concerning, as these small pelagic fish from mid-trophic levels compose a significant part of the diet of humans and other top predators. This study highlights the importance of multidisciplinary approaches focusing on the individual, including position data, stable isotopes, and oxidative stress biomarkers as complementary tools in contamination assessment of the marine mid-trophic levels in food chains.
اظهر المزيد [+] اقل [-]Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula
2022
Matias, Ricardo S. | Guímaro, Hugo R. | Bustamante, Paco | Seco, José | Chipev, N. | Fragão, Joana | Tavares, Sílvia | Ceia, Filipe R. | Pereira, Maria E. | Barbosa, Andrés | Xavier, José C.
Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ¹³C) and nitrogen (δ¹⁵N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ¹³C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ¹⁵N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 μg g⁻¹) and the highest values in M. giganteus (12.090 ± 14.177 μg g⁻¹). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ¹⁵N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long–lived (and high trophic level) Antarctic predators under climate change in the future.
اظهر المزيد [+] اقل [-]Perfluoroalkyl acids (PFAAs) in the aquatic food web of a temperate urban lake in East China: Bioaccumulation, biomagnification, and probabilistic human health risk
2022
Chu, Kejian | Lü, Ying | Hua, Zulin | Liu, Yuanyuan | Ma, Yixin | Gu, Li | Gao, Chang | Yu, Liang | Wang, Yifan
The bioaccumulation and biomagnification of perfluoroalkyl acids (PFAAs) in temperate urban lacustrine ecosystems is poorly understood. We investigated the occurrence and trophic transfer of and probabilistic health risk from 15 PFAAs in the food web of Luoma Lake, a temperate urban lake in East China. The target PFAAs were widely distributed in the water (∑PFAA: 77.09 ± 9.07 ng/L), suspended particulate matter (SPM) (∑PFAA: 284.07 ± 118.05 ng/g dw), and sediment samples (∑PFAA: 67.77 ± 17.96 ng/g dw) and occurred in all biotic samples (∑PFAA: 443.27 ± 124.89 ng/g dw for aquatic plants; 294.99 ± 90.82 for aquatic animals). PFBA was predominant in water and SPM, with 40.11% and 21.35% of the total PFAAs, respectively, while PFOS was the most abundant in sediments (14.11% of the total PFAAs) and organisms (14.33% of the total PFAAs). Sediment exposure may be the major route of biological uptake of PFAAs. The PFAA accumulation capacity was the highest in submerged plants, followed by emergent plants > bivalves > crustaceans > fish > floating plants. Long-chain PFAAs were biomagnified, and short-chain PFAAs were biodiluted across the entire lacustrine food web. PFOS exhibited the greatest bioaccumulation and biomagnification potential among the target PFAAs. However, biomagnification of short-chain PFAAs was also observed within the low trophic-level part of the food web. Human health risk assessment indicated that perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) posed health risks to all age groups, while the other PFAAs were unlikely to cause immediate harm to consumers in the region. This study fills a gap in the knowledge of the transfer of PFAAs in the food webs of temperate urban lakes.
اظهر المزيد [+] اقل [-]Ecotoxicological screening of UV-filters using a battery of marine bioassays
2021
Vieira Sanches, Matilde | Oliva, Matteo | De Marchi, Lucia | Cuccaro, Alessia | Puppi, Dario | Chiellini, Federica | Freitas, Rosa | Pretti, Carlo
The present study aimed to assess the toxicity of seven UV-filters: zinc oxide nanoparticles (nZnO, particle size <100 nm), titanium dioxide nanoparticles (nTiO₂, primary particle size 21 nm), 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4-MBC), avobenzone (AVO), octocrylene (OCTO) and benzophenone-3 (BP-3) on three species: Aliivibrio fischeri (inhibition of bioluminescence), Phaeodactylum tricornutum (growth inhibition) and Ficopomatus enigmaticus (larval development success). Results showed nTiO₂ to be the most toxic for P. tricornutum (EC₅₀ 0.043 mg L⁻¹), while no effect was observed in A. fischeri and F. enigmaticus. EHMC was the most toxic to A. fischeri (EC₅₀ 0.868 mg L⁻¹ (15 min) and 1.06 mg L⁻¹ (30 min)) and the second most toxic to P. tricornutum. For F. enigmaticus, the lowest percentages of correct development resulted from 4-MBC exposure, with EC₅₀ of 0.836 mg L⁻¹. Overall, AVO induced low toxicity to every assessed species and OCTO was the least toxic for F. enigmaticus larvae. Considering the results obtained for F. enigmaticus, further larval development assays were performed with nZnO and EHMC under different light (light vs darkness) and temperature (20 and 25 °C) conditions, showing higher percentages of correct development at 25 °C, independently on light/darkness conditions. Under different temperature and photoperiod conditions, nZnO was more toxic than EHMC. Overall, nZnO and EHMC were among the most toxic UV filters tested and, when testing the effects of these UV-filters with temperature the results highlight that the impacts are liable to be lessened at higher temperatures (25 °C compared with 20 °C), in the case of this estuarine polychaete species. Nevertheless, further experiments are necessary to describe the effects of these two UV-filters at different organization levels, to study the toxicity of eventual degradation by-products and to provide more information on the combination of different stressors.
اظهر المزيد [+] اقل [-]Interactive effects of earthworm Eisenia fetida and bean plant Phaseolus vulgaris L on the fate of soil selenium
2020
Azhar-u-ddin, | Huang, Jung-Chen | Gan, Xinyu | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals with a narrow margin between essentiality and toxicity. Se toxicity is largely related to inorganic forms of Se in soil, i.e., selenite and selenate that enter food chains through plant uptake, threatening higher trophic level organisms. This experiment investigated effects of earthworm activity on Se bioavailability in soil and the subsequent plant uptake, using earthworm Eisenia fetida and bean plant Phaseolus vulgaris L, both exposed to either selenite or selenate at 1 or 4 mg Se kg⁻¹ for 16 weeks. Plants took up selenate (up to 221-fold) faster than selenite, with up to 84% of the Se rapidly transported to shoots. In the presence of earthworms, Se accumulation obviously increased for selenate-supplied plants, leading to an up to 4% increase in Se translocation factor for all treatments except for 1 mg kg⁻¹ selenite treatment. Earthworms also concentrated Se faster in tissues (up to 274 mg kg⁻¹ DW) at exposure to selenate. For Se toxicity, Se speciation analysis was conducted on the plants and earthworms using XAS. Compared to worm-free treatments, the percentage of organo-Se, i.e., SeMet and CysSeSeCys, increased in beans (up to 34%) in the presence of earthworms for selenate, while the elemental Se portion was significantly reduced or absent, opposite to the results for selenite. Surprisingly, elemental Se (up to 65%) dominated earthworms, regardless of the form of Se supplied. In conclusion, earthworms clearly enhanced Se uptake and translocation in plants, leading to elevated Se levels in shoots. To prevent resulting hazards to humans and other animals, caution should be taken while consuming the shoots, particularly beans, harvested from the Se contaminated soil where earthworm activity is high. Finally, the significant reduction in soil Se suggests phytoextraction of Se from the soil could be improved using earthworms as an aid to plants.
اظهر المزيد [+] اقل [-]Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves
2020
Almeida, Angela Maria da | Solé, Montserrat | Soares, Amadeu M.V.M. | Freitas, Rosa
Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have been found in the marine environment. Although there is a large body of evidence that pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the freshwater compartment, only limited studies are available on bioconcentration and the effects of NSAIDs on marine organisms. Bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Therefore, this review summarizes current knowledge on the bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen and paracetamol, in marine bivalves exposed under laboratory conditions. These pharmaceutical drugs were chosen based on their environmental occurrence both in frequency and concentration that may warrant their inclusion in the European Union Watch List. It has been highlighted that ambient concentrations may result in negative effects on wild bivalves after long-term exposures. Also, higher trophic level organisms may be more impacted due to food-chain transfer (e.g., humans are shellfish consumers). Overall, the three selected NSAIDs were reported to bioconcentrate in marine bivalves, with recognized effects at different life-stages. Immune responses were the main target of a long-term exposure to the drugs. The studies selected support the inclusion of diclofenac on the European Union Watch List and highlight the importance of extending research for ibuprofen and paracetamol due to their demonstrated negative effects on marine bivalves exposed to environmental realistic concentrations, under laboratory conditions.
اظهر المزيد [+] اقل [-]Wetland soil microplastics are negatively related to vegetation cover and stem density
2020
Helcoski, Ryan | Yonkos, Lance T. | Sanchez, Alterra | Baldwin, Andrew H.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
اظهر المزيد [+] اقل [-]Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size
2019
Fueser, Hendrik | Mueller, Marie-Theres | Weiss, Linette | Höss, Sebastian | Traunspurger, W. (Walter)
Microplastics are hardly biodegradable and thus accumulate rather than decompose in the environment. Due to sedimentation processes, meiobenthic fauna is exposed to microplastics. Within the meiofauna, nematodes are a very abundant taxon and occupy an important position in benthic food webs by connecting lower and higher trophic levels. However, the key determinants of the uptake of microplastics by freshwater nematodes are still unknown. To investigate the bioaccessibility of microplastics for nematodes, we performed single- and multi-species ingestion experiments in which the ability of seven nematode species (six bacterial and one fungal feeder), diverse in their buccal cavity morphology (1.3–10.5 μm), to ingest fluorescence-labelled polystyrene (PS) beads along with their natural diet was examined. Applied beads sizes (0.5, 1.0, 3.0 and 6.0 μm), exposure time (4, 24 and 72 h) and concentration (3 × 10⁶ PS beads ml⁻¹ and 10⁷ PS beads ml⁻¹) were varied. Ingested beads were localized and quantified via fluorescence microscopy in the nematodes. In contrast to fungal-feeding nematode species with a stylet, bacterial-feeding species ingested 0.5- and 1.0-μm PS beads with up to 249 and 255 beads after 24 h, respectively. Microplastics ≥0.5 μm could only be ingested and transported into the gastrointestinal tract, if the buccal cavities were considerably (>1.3 times) larger than the beads. At concentrations of 10⁷ PS beads ml⁻¹ ingestion rates were influenced by exposure time and PS bead concentration. In case of a known microplastic size distribution in the environment, predictions on the potential ingestion for nematode communities can be made based on the feeding type composition and the size of their buccal cavities.
اظهر المزيد [+] اقل [-]Selenium removal and biotransformation in a floating-leaved macrophyte system
2019
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals with a relatively narrow margin between essentiality and toxicity. To evaluate Se removal efficiency by a constructed wetland treatment system and its potential eco-risk, a floating-leaved macrophyte system was constructed, consisting of three main trophic levels. Over 21-d treatment, water Se concentration was gradually reduced by 40.40%, while 24.03% and 74.41% of the removed Se were found in the plant Nymphoides sp. and sediment, respectively. Among plant tissues, roots accumulated the highest Se level, although the greatest total Se was found in stems, followed by leaves, roots and rhizomes. X-ray absorption spectroscopy revealed that 82.65% of the absorbed selenite by the plants was biotransformed to other forms, as organo-Se species accounted for 45.38% of the Se retained in the sediment, which was primarily responsible for the entry of Se into the detritus food chain. The proportion of organo-Se compounds increased with trophic levels from sediments to fish, indicating, instead of direct uptake of selenite, the food chain transfer and biotransformation of Se may serve as a key exposure route for Se in aquatic organisms. When exposed to organo-Se compounds, i.e., SeCys and SeMet, the plants, shrimp and fish tended to accumulate more Se. However, the greater trophic transfer factor was obtained for selenate, leading to higher Se levels accumulated in fish. Overall, in addition to key mechanisms involved in Se removal, our research also provides a much better understanding of the potential eco-risk that may be posed by the floating-leaved plant system for bioremediation of Se via food chain transfer and biotransformation, paving the way for a low eco-toxic treatment system for Se remediation.
اظهر المزيد [+] اقل [-]