خيارات البحث
النتائج 1 - 10 من 432
Performance of Natural Coagulant Extracted from Castanea Sativa Tree Leaves in Water Purification processes النص الكامل
2024
Hasan, Manar | Hassan, Ahmad | Al-Tameemi, Israa M. | Hassan, Nawar
Numerous coagulants, including natural and chemical coagulants, have been examined in the context of water purification. The use of natural coagulants constitutes an affordable and eco-friendly method of purifying water. The main aim of the current study was represented by investigated the feasibility of coagulant extracted from Castanea Sativa Tree Leaves using three different salts and distilled water. The active coagulant component was extracted using 0.25, 0.5, and 1 M of NaCl and KCl, 0.025, 0.05, and 0.1 M of NaOH, and distilled water. Powdered Castanea Sativa Tree Leaves was also used as a coagulant. Jar tests were performed using synthetic turbid water, a turbidity level of 35 NTU to investigate the coagulants’ activity. The pH was measured to study the influence of a range of different pHs, coagulant doses and initial turbidity were also investigated to optimize the coagulation process. The highest level of activity was achieved using 0.5 ml/l of coagulant extracted with 0.5 M NaCl at pH level 8. Coagulant extracted using 0.05 M NaOH demonstrated the second highest level of activity. Poor coagulant activity was observed for the powdered Castanea Sativa Tree Leaves and distilled water extract. The protein content of the extracted coagulant was 0.322, 0.283, and 0.274 mg/ml using 0.05 M NaCl, 0.5 M NaOH, and 0.5 M KCl, respectively. The use of this natural coagulant was also found to moderately increase organic matter content in the treated water, which was proportional to protein contents of the extracts. Coagulation results were statistically examined using SigmaPlot 12.5 software.
اظهر المزيد [+] اقل [-]Treatment Oilfield Produced Water using Coagulation/Flocculation Process (case study: Alahdab Oilfield) النص الكامل
2021
Jabbar, Hussein Ali | Alatabe, Mohammed jaafar Ali
Produced water is a large amount of water wasted throughout the crude oil extraction process, it's a mixture of the well's deposition water and the water of oil wells extraction water. Produced water contains oil, suspended solids and dissolves solid. This study tested produced water collected from Alahdab oilfield/middle oil company for oil content and suspended solid contamination using chemical precipitation and coagulation-flocculation for reinjection and environmental considerations. Coagulation/flocculation is a common method used as primary purification to oily wastewater treatment due to its usability, performance, and low cost. Coagulant experimental was completed by A jar test device, additives of ferric sulfate and aluminium sulfate were in a range about (10 ـ 40) ppm, as well as polyelectrolyte- (polyacrylamide) as an additional flocculent in the range (1.5-3) ppm. The results show that ferric sulfate was more efficient at removing turbidity than aluminium sulfate under the same conditions, with the best removal of turbidity at dose concentration 30 ppm of Ferric sulfate and a flocculent dose concentration of 2.5 ppm of polyacrylamide, also with oil content decreasing from 396.71 ppm to 53.56 ppm.
اظهر المزيد [+] اقل [-]Human impacted shallow lakes in the Pampean plain are ideal hosts for cyanobacterial harmful blooms النص الكامل
2021
O'Farrell, Inés | Sánchez, María Laura | Schiaffino, María Romina | Izaguirre, Irina | Huber, Paula | Lagomarsino, Leonardo | Yema, Lilen
The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.
اظهر المزيد [+] اقل [-]Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas H. | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas H. | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11–500 μm fraction) and net sampling (500–5000 μm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11–500 μm fraction (2.3 × 10¹ − 9.7 × 10³ MP m⁻³), with the polymer cluster acrylates/polyurethanes(PUR)/varnish being dominant. The >500 μm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.
اظهر المزيد [+] اقل [-]Microplastic pollution in the Weser estuary and the German North Sea
Abundances of small microplastics (S-MP, 11-500 µm) in surface waters of the Weser estuary and the German North Sea (April 2018) النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas Henry | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
In order to assess pollution with small microplastics (S-MP, 11-500 µm) in the Lower Weser and transition to the German North Sea, surface water samples were collected with the RV Otzum (ICBM, Institute for Chemistry and Biology of the Marine Environment), as well as with the RV Uthörn (AWI, Alfred-Wegener-Institute) in April 2018. Sampling was performed using a pumping system containing of a floating suction basket (mesh size: 500 µm) for pre-filtration, followed by the concentration onto a 15 µm stainless steel screen. Samples were isolated from the filter screens in the laboratory, thoroughly processed and measured via µFTIR imaging. Dominant polymer type in the S-MP sample fraction was acrylates/polyurethanes/varnish, and concentrations ranged between 2.3 × 10¹ and 9.7 × 10³ m⁻³, with maximum values in the area of the turbidity Maximum Zone of the River Weser.
اظهر المزيد [+] اقل [-]Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara M. | Gerriets, Michaela | Badewien, Thomas | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11-500 µm fraction) and net sampling (500-5000 µm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11-500 µm fraction (2.3 × 101 − 9.7 × 103 m−3), with the polymer cluster acrylates/polyurethanes/varnish being dominant. The >500 µm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.
اظهر المزيد [+] اقل [-]Abundances of large microplastics (L-MP, 500-5000 µm) in surface waters of the Weser estuary and the German North Sea (April 2018) النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas Henry | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
In order to assess pollution with large microplastics (L-MP, 500-5000 µm) in the Lower Weser and transition to the German North Sea, surface water samples were collected with the RV Otzum (ICBM, Institute for Chemistry and Biology of the Marine Environment), as well as with the RV Uthörn (AWI, Alfred-Wegener-Institute) in April 2018. Sampling was performed using a microplastic net (mesh size: 300 µm), followed by filtration in the laboratory over a 500 µm stainless steel sieve. Putative MP items in the size range 500-5000 µm were analysed by means of Attenuated Total Reflection - FTIR in order to determine the underlying synthetic polymer. Dominant polymer type in the L-MP sample fraction was polyethylene. Concentrations ranged between 1 × 10⁻² m⁻³ and 9.8 × 10⁻¹ m⁻³. The highest MP concentration was measured upstream the Weser Weir.
اظهر المزيد [+] اقل [-]Microphytobenthos diversity and community structure across different micro-estuaries and micro-outlets: Effects of environmental variables on community structure النص الكامل
2020
Dalu, Tatenda | Magoro, Mandla L. | Naidoo, Lyndle S. | Wasserman, Ryan J. | Human, Lucienne RD. | Adams, Janine B. | Perissinotto, R. | Deyzel, Shaun HP. | Wooldridge, Tris | Whitfield, Alan K.
This study forms the first basic assessment of microphytobenthos (MPB) dynamics in micro-estuaries and micro-outlets in southern Africa. It examines MPB community responses to environmental variables and further investigates MPB composition qualitatively across different micro-estuaries and micro-outlets over four seasons in a warm temperate region of the subcontinent. Combinations of multivariate analyses were used to explore similarities and differences in MPB communities between systems. Human-induced catchment changes between microsystems ranged from no alteration (rating 0; mostly micro-outlets) to extreme modification (rating 5; mostly micro-estuaries). Two hundred and sixty-seven MPB taxa were identified within all the microsystems, with 247 and 230 MPB taxa being observed in the micro-estuaries and micro-outlets, respectively. The MPB communities differed slightly in terms of microsystem types and seasons, but no significant differences were observed. Multivariate analyses (i.e. Boosted Regression Trees, Canonical Correspondence Analysis) showed that water column variables were significant and important in structuring MPB communities, with soluble reactive phosphorus, sediment pH, turbidity, ammonium and temperature being documented as key drivers. The MPB community composition clearly reflected the influence of catchment anthropogenic activities on species composition and structure. Moderately modified catchments resulted in MPB community structure variation among water bodies in relationship to land use and salinity gradients. The study found that; (i) by virtue of their size, microsystems and their catchments are likely to be particularly vulnerable to anthropogenic pressures when compared to systems of larger size; (ii) a typical impacted state may reflect reduced environmental heterogeneity which, compared to larger systems, may be achieved over much shorter time periods (following a particular event) or under much less intensive impacts; and (iii) the response in terms of MPB structure may predictably reflect a concomitant change from a complex community dynamic (structure and spatio-temporal attributes) to one that approaches a homogeneous structure (poor spatial zonation, strong taxonomic dominance, low species diversity).
اظهر المزيد [+] اقل [-]Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents النص الكامل
2020
Noman, Muhammad | Shāhid, Muḥammad | Ahmed, Temoor | Niazi, Muhammad Bilal Khan | Ḥussain, Ṣābir | Song, Fengming | Manzoor, Irfan
Textile wastewater contains a huge amount of azo dyes and heavy metals and catastrophically deteriorates the agricultural field by affecting its phyisco-chemical/biological and nutritional properties when directly drained to agricultural lands without any treatment. Recently, biogenic copper nanoparticles (CuNPs) have gained considerable attention for photocatalytic degradation of wastewater pollutants owing to their unique physico-chemical and biological properties, low cost and environmental sustainability. The current study reports the synthesis of CuNPs by a native copper-resistant bacterial strain Escherichia sp. SINT7 and evaluation of the photocatalytic activity of the biogenic CuNPs for azo dye degradation and treatment of textile effluents. Scanning electron microscopy and transmission electron microscopy revealed the spherical shape of biogenic CuNPs with particle size ranging from 22.33 to 39 nm. Moreover, X-ray diffraction data revealed that the CuNPs have spherical crystalline shapes with an average particle size of 28.55 nm. FTIR spectra showed the presence of coating proteins involved in the stabilization of nanomaterial. Azo dye degradation assays indicated that CuNPs decolorized congo red (97.07%), malachite green (90.55%), direct blue-1 (88.42%) and reactive black-5 (83.61%) at a dye concentration of 25 mg L⁻¹ after 5 h of sunlight exposure. However, at 100 mg L⁻¹ dye concentration, the degradation percentage was found to be 83.90%, 31.08%, 62.32% and 76.84% for congo red, malachite green, direct blue-1 and reactive black-5, respectively. Treatment of textile effluents with CuNPs resulted in a significant reduction in pH, electrical conductivity, turbidity, total suspended solids, total dissolved solids, hardness, chlorides and sulfates as compared to the non-treated samples. Thus, the promising dye detoxification and textile effluent recycling efficiency of biogenic CuNPs may lead to the development of eco-friendly and cost-efficient process for large-scale wastewater treatment.
اظهر المزيد [+] اقل [-]Comparing the performance of three methods to assess DOM dynamics within two distinct glacierized watersheds of the tropical Andes النص الكامل
2020
Rodriguez-Avella, K.A. | Baraer, M. | Mark B., | McKenzie, J. | Somers, L.
Dissolved organic matter (DOM) is recognized as a good indicator of water quality as its concentration is influenced by land use, rainwater, windborne material and anthropogenic activities. Recent technological advances make it possible to characterize fluorescent dissolved organic matter (FDOM), the fraction of DOM that fluoresces. Among these advances, portable fluorometers and benchtop fluorescence excitation and emission spectroscopy coupled with a parallel factor analysis (EEM-PARAFAC) have shown to be reliable. Despite their rising popularity, there is still a need to evaluate the extent to which these techniques can assess DOM dynamics at the watershed scale. We compare the performance of in-situ measurements of FDOM with laboratory measurements of fluorescence spectroscopy within the context of two distinct glacierized watersheds in Peru. Glacierized watersheds represent unique testing environments with contrasting DOM conditions, flowing from pristine, vegetation-free headwaters through locations with obvious anthropogenic influences. We used an in-situ fluorometer and a portable multimeter to take 38 measurements of FDOM, pH and turbidity throughout the two catchments. Additionally, samples were analyzed in the laboratory using the EEM-PARAFAC method. Results were compared to dissolved organic carbon (DOC) measurements using standard high-temperature catalytic oxidation. Our results show that the three techniques together were able to capture the DOM dynamics for both studied watersheds. Taken individually, all three methods allowed detection of the watershed DOM main points of sources but in a more limited way. Due to the narrow bandwidth of the portable fluorometer used in the study, FDOM measurements were almost non-detectable to protein-like substances. Indeed, the more demanding EEM-PARAFAC was able to both differentiate between potential sources of DOM and provide an estimate of relative concentrations of different organic components. Finally, similar to FDOM but to a lesser extent, the DOC measurements showed some limits where protein-like substances make up most of the DOM composition.
اظهر المزيد [+] اقل [-]Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process النص الكامل
2019
Zhang, Xiaoye | Tian, Yiping | Zhang, Xiaofang | Bai, Mindong | Zhang, Zhitao
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
اظهر المزيد [+] اقل [-]Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor's performance and metagenomic insights into microbial community evolution النص الكامل
2018
Saleem, Mubbshir | Lavagnolo, Maria Cristina | Campanaro, Stefano | Squartini, Andrea
The use of dynamic membranes as a low-cost alternative for conventional membrane for the treatment of landfill leachate (LFL) was investigated in this study. For this purpose a lab-scale, submerged pre-anoxic and post-aerobic bioreactor configuration was used with nylon mesh as dynamic membrane support. The study was conducted at ambient temperature and LFL was fed to the bioreactor in gradually increasing concentration mixed with tap water (from 20% to 100%). The results of this study demonstrated that lower mesh pore size of 52 μm achieved better results in terms of solid-liquid separation performance (turbidity <10 NTU) of the formed dynamic membrane layer as compared to 200 and 85 μm meshes while treating LFL. Consistently high NH₄⁺-N conversion efficiency of more than 98% was achieved under all nitrogen loading conditions, showing effectiveness of the formed dynamic membrane in retaining slow growing nitrifying species. Total nitrogen removal reached more than 90% however, the denitrification activity showed a fluctuating profile and found to be inhibited by elevated concentrations of free nitrous acid and NO₂⁻-N at low pH values inside the anoxic bioreactor. A detailed metagenomic analysis allowed a taxonomic investigation over time and revealed the potential biochemical pathways involved in NH₄⁺-N conversion. This study led to the identification of a dynamic system in which nitrite concentration is determined by the contribution of NH₄⁺ oxidizers (Nitrosomonas), and by a competition between nitrite oxidizers (Nitrospira and Nitrobacter) and reducers (Thauera).
اظهر المزيد [+] اقل [-]Environmental change in a modified catchment downstream of a gold mine, Solomon Islands النص الكامل
2017
Albert, Simon | Kvennefors, Charlotte | Jacob, Krista | Kera, Joshua | Grinham, Alistair
Solomon Islands is rapidly developing its natural resource exploitation sector, but data needed to assess consequent environmental impacts are scarce. We assessed catchments surrounding the Gold Ridge gold mine (Guadalcanal, Solomon Islands) and found that extensive changes in river course, and water and sediment quality have occurred downstream of the gold mine since its development. Sediment run-off from exposed areas associated with the mine pit has increased, elevating turbidity (up to 2450 NTU) and metal and arsenic levels, with levels of the latter being up to 0.141 mg/L in surface waters and 265 mg/kg in sediments. An overfull, inoperative tailings storage facility associated with the currently inactive gold mine with fluctuating arsenic levels (up to 0.087 mg/L in the water; 377 mg/kg in the sediment) presents an ongoing threat to the environment. Arsenic, due to its toxicity, appears to be the greatest threat, with sediment and water guideline levels in rivers exceeded 10-fold and exceeded nearly 20-fold in the tailings dam sediments. Despite elevated metal and arsenic content in the area, no toxic inorganic arsenic was found to have bioaccumulated in locally harvested food. In summary, the natural environment surrounding the Gold Ridge mine has been modified substantially and requires an ongoing monitoring program to ensure the ecosystem services of food and water for the local communities continue to be safe. This study informs not only the local area but also provides a microcosm of the broader global challenges facing the regulation of extractive industries in proximity to subsistence communities.
اظهر المزيد [+] اقل [-]