خيارات البحث
النتائج 1 - 10 من 240
Response to heavy nitrogen applications in fertilizer experiments in British forests.
1988
Miller H.G. | Miller J.D.
Persistence and fate of polychlorinated biphenyls (PCBs) in sewage sludge-amended agricultural soils.
1996
Alcock R.E. | Bacon J. | Bardget R.D. | Beck A.J. | Haygarth P.M. | Lee R.G.M. | Parker C.A. | Jones K.C.
Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems.
1994
Spurgeon D.J. | Hopkin S.P. | Jones D.T.
Regional variation in surface properties of Norway spruce and Scots pine needles in relation to forest decline.
1989
Cape J.N. | Paterson I.S. | Wolfenden J.
Organic carbon concentration profiles in recent cave sediments: records of agricultural pollution or diagenesis?.
1996
Bottrell S.H.
Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom
2021
Jephcote, Calvin | Hansell, A. L. (Anna L.) | Adams, Kathryn | Gulliver, John
The UK implemented a lockdown in Spring (2020) to curtail the person-to-person transmission of the SARS-CoV-2 virus. Measures restricted movements to one outing per day for exercise and shopping, otherwise most people were restricted to their dwelling except for key workers (e.g. medical, supermarkets, and transport). In this study, we quantified changes to air quality across the United Kingdom from 30/03/2020 to 03/05/2020 (weeks 14–18), the period of most stringent travel restrictions. Daily pollutant measurements of NO₂, O₃ and PM₂.₅ from the national network of monitoring sites during this period were compared with measurements over the same period during 2017–19. Comparisons were also made with predicted concentrations for the 2020 period from business-as-usual (BAU) modelling, where the contributions of normal anthropogenic activities were estimated under the observed meteorological conditions. During the lockdown study period there was a 69% reduction in traffic overall (74% reduction in light and 35% in heavy vehicles). Measurements from 129 monitoring stations, identified mean reductions in NO₂ of 38.3% (−8.8 μg/m³) and PM₂.₅ of 16.5% (−2.2 μg/m³). Improvements in NO₂ and PM₂.₅ were largest at urban traffic sites and more modest at background locations where a large proportion of the population live. In contrast, O₃ concentrations on average increased by 7.6% (+4.8 μg/m³) with the largest increases at roadside sites due to reductions in local emissions of NO. A lack of VOC monitoring limited our capacity to interpret changes in O₃ at urban background locations. BAU models predicted comparable NO₂ reductions and O₃ gains, although PM₂.₅ episodes would have been more prominent without lockdown. Results demonstrate the relatively modest contribution of traffic to air quality, suggesting that sustained improvements in air quality require actions across various sectors, including working with international and European initiatives on long-range transport air pollutants, especially PM₂.₅ and O₃.
اظهر المزيد [+] اقل [-]Impacts of nitrogen deposition on carbon and nitrogen cycling in alpine Racomitrium heath in the UK and prospects for recovery
2019
Britton, Andrea J. | Gibbs, Sheila | Fisher, Julia M. | Helliwell, Rachel C.
Deposition of reactive nitrogen (N) is a major threat to terrestrial ecosystems associated with impacts on ecosystem properties and functions including carbon (C) and nutrient stocks, soil water quality and nutrient retention. In the oceanic-alpine Racomitrium heath habitat, N deposition is associated with moss mat degradation and a shift from bryophyte to graminoid dominance. To investigate the effects of moss mat decline on C and N stocks and fluxes, we collected Racomitrium heath vegetation/soil cores from sites along a gradient of N deposition in the UK. Cores were maintained under controlled conditions and exposed to scenarios of current (8–40 kg N ha⁻¹ y⁻¹), reduced (8 kg N ha⁻¹ y⁻¹) and elevated (50 kg N ha⁻¹ y⁻¹) N deposition. Cores from high N deposition sites had smaller aboveground C and N stocks and, under current conditions, leached large amounts of inorganic N and had low soil water pH compared with low N deposition sites. With reduced N deposition there was evidence for rapid recovery of soil water quality in terms of reduced N leaching and small increases in pH. Under high N deposition, cores from low N deposition sites retained much of the applied N while those with a history of high N deposition leached large amounts of inorganic N. Carbon fluxes in soil water and net CO₂ fluxes varied according to core source site but were not affected by the N deposition scenarios. We conclude that C and N stocks and cycling in Racomitrium heath are strongly affected by long-term exposure to N deposition but that soil water quality may improve rapidly, if N deposition rates are reduced. The legacy of N deposition impacts on moss mat cover and vegetation composition however, mean that the ecosystem remains sensitive to future pulses in N input.
اظهر المزيد [+] اقل [-]What is the most ecologically-meaningful metric of nitrogen deposition?
2019
Payne, Richard J. | Campbell, Claire | Britton, Andrea J. | Mitchell, R. J. (Ruth J.) | Pakeman, R. J. (Robin J.) | Jones, Laurence | Ross, L. C. (Louise C.) | Stevens, Carly J. | Field, Christopher | Caporn, Simon J.M. | Carroll, Jacky | Edmondson, Jill L. | Carnell, Edward J. | Tomlinson, Sam | Dore, Anthony J. | Dise, Nancy | Dragosits, Ulrike
Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing this threat is an important focus for air pollution science and policy. To understand and manage the impacts of N deposition, we need metrics which accurately reflect N deposition pressure on the environment, and are responsive to changes in both N deposition and its impacts over time. In the UK, the metric typically used is a measure of total N deposition over 1–3 years, despite evidence that N accumulates in many ecosystems and impacts from low-level exposure can take considerable time to develop. Improvements in N deposition modelling now allow the development of metrics which incorporate the long-term history of pollution, as well as current exposure. Here we test the potential of alternative N deposition metrics to explain vegetation compositional variability in British semi-natural habitats. We assembled 36 individual datasets representing 48,332 occurrence records in 5479 quadrats from 1683 sites, and used redundancy analyses to test the explanatory power of 33 alternative N metrics based on national pollutant deposition models. We find convincing evidence for N deposition impacts across datasets and habitats, even when accounting for other large-scale drivers of vegetation change. Metrics that incorporate long-term N deposition trajectories consistently explain greater compositional variance than 1–3 year N deposition. There is considerable variability in results across habitats and between similar metrics, but overall we propose that a thirty-year moving window of cumulative deposition is optimal to represent impacts on plant communities for application in science, policy and management.
اظهر المزيد [+] اقل [-]Impact of long-term nitrogen deposition on the response of dune grassland ecosystems to elevated summer ozone
2019
Hayes, Felicity | Lloyd, Bethan | Mills, Gina | Jones, Laurence | Dore, Anthony J. | Carnell, Edward | Vieno, Massimo | Dise, Nancy | Fenner, Nathalie
Nitrogen deposition and tropospheric ozone are important drivers of vegetation damage, but their interactive effects are poorly understood. This study assessed whether long-term nitrogen deposition altered sensitivity to ozone in a semi-natural vegetation community. Mesocosms were collected from sand dune grassland in the UK along a nitrogen gradient (5–25 kg N/ha/y, including two plots from a long-term experiment), and fumigated for 2.5 months to simulate medium and high ozone exposure. Ozone damage to leaves was quantified for 20 ozone-sensitive species. Soil solution dissolved organic carbon (DOC) and soil extracellular enzymes were measured to investigate secondary effects on soil processes.Mesocosms from sites receiving the highest N deposition showed the least ozone-related leaf damage, while those from the least N-polluted sites were the most damaged by ozone. This was due to differences in community-level sensitivity, rather than species-level impacts. The N-polluted sites contained fewer ozone-sensitive forbs and sedges, and a higher proportion of comparatively ozone-resistant grasses. This difference in the vegetation composition of mesocosms in relation to N deposition conveyed differential resilience to ozone.Mesocosms in the highest ozone treatment showed elevated soil solution DOC with increasing site N deposition. This suggests that, despite showing relatively little leaf damage, the ‘ozone resilient’ vegetation community may still sustain physiological damage through reduced capacity to assimilate photosynthate, with its subsequent loss as DOC through the roots into the soil.We conclude that for dune grassland habitats, the regions of highest risk to ozone exposure are those that have received the lowest level of long-term nitrogen deposition. This highlights the importance of considering community- and ecosystem-scale impacts of pollutants in addition to impacts on individual species. It also underscores the need for protection of ‘clean’ habitats from air pollution and other environmental stressors.
اظهر المزيد [+] اقل [-]How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood
2018
Aristodemou, Elsa | Boganegra, Luz Maria | Mottet, Laetitia | Pavlidis, Dimitrios | Constantinou, Achilleas | Pain, Christopher | Robins, Alan | ApSimon, H. M. (Helen M.)
The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings (“skyscrapers”) with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of “dead-zones” and high-concentration “hotspots” in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria.
اظهر المزيد [+] اقل [-]