خيارات البحث
النتائج 1 - 10 من 1,091
The Effect of Land Use Changes on Water Quality (Case Study: Zayandeh-Rud Basin, Isfahan, Iran) النص الكامل
2021
Saedpanah, Mahin | Reisi, Marzieh | Ahmadi Nadoushan, Mozhgan
The present study aims at investigating land use changes (as one of the effective human factors on water systems) as well as its relation with water quality at spatial scales of the entire basin, sub-basin and defined buffers (10 and 15 km) in Zayandeh-Rud Basin, Isfahan, Iran. By means of supervised classification method along with maximum likelihood algorithm, it classifies the land use map into five categories, including agriculture, bare lands, urban areas, vegetation, and water. The research collects data for 11 water quality parameters in seven sampling stations of Zayandeh-Rud Basin in 2002, 2009, and 2015 from Isfahan Water and Sewerage Organization. Correlation analysis is then conducted to investigate the effect of land use changes on water quality at different spatial scales. Land use analysis in the entire basin shows that despite an increase in urban and agricultural lands from 2002 to 2015, bare lands, vegetation, and water covers have had a decreasing trend. Moreover, various land uses at different scales show some correlation with water quality parameters. The strongest correlations in this study belong to sub-basin scale. Therefore, it is recommended to use this spatial scale to investigate the relation between land use and water quality parameters
اظهر المزيد [+] اقل [-]Using Benthic Diatoms as a Bioindicator to Assess Rural-urban River Conditions in Tropical Area: A Case Study in the Sai Gon River, Vietnam النص الكامل
2020
Pham, T. L.
The changes in diatom assemblages along an urban-to-rural gradient were characterized to assess the ecological status of the Sai Gon River, Vietnam. Diatoms and physico-chemical variables were measured at 10 stations during dry and rainy season. One-way ANOVA showed that diatom metrics and physicochemical variables were significantly different (p < 0.05) between the upper course sites and both the middle- and the lower sites. However, no significant differences were observed between the middle course sites and the lower course sites. Achnanthidium minutissimum and A. exigua were potential indicators of low nutrient in the upper course sites; Melosira granulata and Navicula viridula were preferred moderately eutrophic water in the middle course sites; while Navicula cryptocephala and Nitzschia palea were tolerant to very heavy pollution and dominant in the lower course sites. Canonical correlation analysis (CCA) results showed that concentration of TSS, TN, TP, BOD5 and COD were the most important factors in structuring benthic diatom communities in the Sai Gon River. The results of this study indicated that diatom community was sensitive to changes in urban condition and could be used as an indicator of urbanization.
اظهر المزيد [+] اقل [-]Algal Indices as a Biomonitoring Tool to Assess Eutrophication in the Urban Ponds: a Case Study النص الكامل
2020
Vishal, R. | Meeta, B.
Eutrophication of the urban water bodies is one the biggest challenge causing severe ecological and economic loss. Urban ponds are more prone to eutrophication due to their small size and polluted catchment areas. Biomonitoring using phytoplankton provides cost-effective estimation of the level of eutrophication. Ten urban ponds in different areas of the Mumbai city were chosen to investigate the phytoplankton community structure, and level of eutrophication. We assessed the 3 algal indices viz. Shannon-Wiener indices, Palmer and Nygard's (Myxophycean and diatom) indices. Linear relationship of these indices was tested against Carlson trophic state indices in order to assess the effectiveness of these indices to measure the degree of eutrophication in urban lakes. All ten lakes were found to be eutrophic, of which two were very low eutrophic (TSI – 53.74-53.95), four were low-mid eutrophic (TSI – 55.18 – 57.5), and four lakes were mid eutrophic (TSI 61.4 – 62.2). Shannon-Wiener indices (r= -0.73) and Myxophycean indices (r= 0.77) showed strong correlation with TSI whereas Diatom indices (r= -0.12) and Palmer’s Algal Pollution Indices (r= - 0.47) showed weak correlation with TSI. Thus study found that Shannon-Wiener indices and Myxophycean indices are reliable and cost effective means to assess the eutrophication of urban ponds in Mumbai.
اظهر المزيد [+] اقل [-]Urban Air Quality Nexus: PM2.5 Bound-Heavy Metals and their Alarming Implication for Incremental Lifetime Cancer Risk النص الكامل
2024
Attiq, Abu Bakar | Nawaz, Rab | Irshad, Muhammad | Nasim, Iqra | Nasim, Marriyam | Latif, Maria | Shah, Syed Imran | Fatima, Aiman
Fine particulate matter (PM2.5) have not only detrimental impacts on air quality but also acts as a source for a range of heavy metals that worsen the potential risks to public health. Notably, previous studies on PM2.5-bound heavy metals in Pakistan have primarily focused on individual cities. This study offers a comprehensive analysis of pollution characteristics related to PM2.5-bound heavy metals, including lead (Pb), cadmium (Cd), zinc (Zn), and nickel (Ni), in ten cities of Pakistan. Data was collected from a wide range of reliable sources spanning from 2013 to 2023. Additionally, the human health risk assessment methodology endorsed by the United States Environmental Protection Agency (US EPA) was employed to evaluate both carcinogenic and non-carcinogenic risks for adults (males and females) and children. Findings of the present study revealed that children faced a greater risk associated with PM2.5-bound heavy metals as compared to adults. Cadmium, zinc, and nickel were found as the top three contributors to the average non-carcinogenic risk, while lead, cadmium, and nickel showed the highest carcinogenic risks. Based on these findings, this study strongly recommend that the government should strengthen the management of industrial and vehicular emissions. Furthermore, there is an imperative need to establish a real-time monitoring system capable of tracking toxic heavy metal pollutants transported through the atmosphere. Additionally, policymakers should seriously contemplate regional collaborations with the goal of creating metropolitan initiatives for pollution control, thereby effectively addressing these paramount environmental and public health concerns.
اظهر المزيد [+] اقل [-]Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes النص الكامل
2018
Hette-Tronquart, N. | Oberdorff, T. | Tales, E. | Zahm, Amandine | Belliard, J. | Hydrosystèmes et Bioprocédés (UR HBAN) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]QUASARE [ADD1_IRSTEA]Dynamique et fonctionnement des écosystèmes | International audience | As part of the landscape, streams are influenced byland use. Here, we contributed to the understanding of the biological impacts of land use on streams, investigating how landscape effects vary with spatial scales (local vs. regional). We adopted a food web approach integrating both biological structure and functioning, to focus on the overall effect of land use on stream biocoenosis. We selected 17 sites of a small tributary of the Seine River (France) for their contrasted land use, and conducted a natural experiment by sampling three organic matter sources, three macroinvertebrate taxa, and most of the fish community. Using stable isotope analysis, we calculated three food web metrics evaluating two major dimensions of the trophic diversity displayed by the fish community: (i) the diversity of exploited resources and (ii) the trophic level richness. The idea was to examine whether (1) land-use effects varied according to spatial scales, (2) land use affected food webs through an effect on community structure and (3) land use affected food webs through an effect onavailable resources. Beside an increase in trophic diversity from upstream to downstream, our empirical data showed that food webs were influenced by land use in the riparian corridors (local scale). The effect was complex, and depended on site's position along the upstream-downstream gradient. By contrast, land use in the catchment (regional scale) did not influence stream biocoenosis. At the local scale, community structure was weakly influenced by land use, and thus played a minor role in explaining food web modifications. Our results suggested that the amount of available resources at the base of the food web was partly responsible for food web modifications. In addition, changes in biological functioning (i.e. feeding interactions) can also explain another part of the land-use effect. These results highlight the role played by the riparian corridors as a buffer zone, and advocate that riparian corridor should be at the centre of water management attention.
اظهر المزيد [+] اقل [-]Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes النص الكامل
2018
Hette-Tronquart, Nicolas | Oberdorff, Thierry | Tales, Evelyne | Zahm, Amandine | Belliard, Jérôme | Hydrosystèmes et Bioprocédés (UR HBAN) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Evolution et Diversité Biologique (EDB) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]QUASARE [ADD1_IRSTEA]Dynamique et fonctionnement des écosystèmes | International audience | As part of the landscape, streams are influenced byland use. Here, we contributed to the understanding of the biological impacts of land use on streams, investigating how landscape effects vary with spatial scales (local vs. regional). We adopted a food web approach integrating both biological structure and functioning, to focus on the overall effect of land use on stream biocoenosis. We selected 17 sites of a small tributary of the Seine River (France) for their contrasted land use, and conducted a natural experiment by sampling three organic matter sources, three macroinvertebrate taxa, and most of the fish community. Using stable isotope analysis, we calculated three food web metrics evaluating two major dimensions of the trophic diversity displayed by the fish community: (i) the diversity of exploited resources and (ii) the trophic level richness. The idea was to examine whether (1) land-use effects varied according to spatial scales, (2) land use affected food webs through an effect on community structure and (3) land use affected food webs through an effect onavailable resources. Beside an increase in trophic diversity from upstream to downstream, our empirical data showed that food webs were influenced by land use in the riparian corridors (local scale). The effect was complex, and depended on site's position along the upstream-downstream gradient. By contrast, land use in the catchment (regional scale) did not influence stream biocoenosis. At the local scale, community structure was weakly influenced by land use, and thus played a minor role in explaining food web modifications. Our results suggested that the amount of available resources at the base of the food web was partly responsible for food web modifications. In addition, changes in biological functioning (i.e. feeding interactions) can also explain another part of the land-use effect. These results highlight the role played by the riparian corridors as a buffer zone, and advocate that riparian corridor should be at the centre of water management attention.
اظهر المزيد [+] اقل [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations النص الكامل
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
اظهر المزيد [+] اقل [-]Decadal acidification in a subtropical coastal area under chronic eutrophication النص الكامل
2022
Yao, Hongming | Wang, Jiujuan | Han, Yu | Jiang, Xiaoli | Chen, Jinsong
Coastal acidification is often much more intense than ocean acidification due to eutrophication. To better understand the relationship between long-term coastal acidification (CA) and coastal eutrophication (CE), in-situ monthly data over the past three decades (1986–2017) were analyzed from Hong Kong Coast (HKC). The coastwide annual mean pH change (ΔpHₘₑₐₙ) was estimated at −0.0085 ± 0.0069 unit·yr⁻¹ in last decades, which was over four times stronger than current estimation on open ocean acidification rate (∼−0.0019 unit·yr⁻¹). According to the CA spatial pattern, greater pH decline (ΔpHₘₑₐₙ = −0.017 ± 0.009 unit·yr⁻¹) occurred in northwest, central south and central east HKC areas, much higher than the less acidified (ΔpHₘₑₐₙ = −0.004 ± 0.002 unit·yr⁻¹) southwest and northeast HKC areas. The spatiotemporal CA variations were associated with water discharges, atmospheric CO₂ increase and respiration/production that was indicated by DIN:DIP structure changes. The annual mean DIN:DIP ratio increased progressively from initial ∼16 in 1986 to ∼37 in 2017, revealing excess nitrogen load from rapid urbanization in this region. Such discharge-induced acidification was estimated as the major contributor for the total CA in HKC over the last three decades. In addition, our simulation results indicated that a potential CA rate at ∼0.0035 unit·yr⁻¹ could be reached if reducing mean DIN:DIP from discharged water to ∼23 from HKC. This study revealed a previously not recognized relationship between coastal acidification and changing coastal nutrient stoichiometry, and proposed possible management approaches.
اظهر المزيد [+] اقل [-]Appraising regional anthropogenic heat flux using high spatial resolution NTL and POI data: A case study in the Beijing-Tianjin-Hebei region, China النص الكامل
2022
Wang, Yichen | Hu, Deyong | Yu, Chen | Di, Yufei | Wang, Shasha | Liu, Manqing
Rapid urbanization and the aggregation of human activities in cities have resulted in large amounts of anthropogenic heat (AH) emission, which affects urban climate. Quantifying and assessing the AH emission values accurately and analyzing their spatial distribution characteristics is important to understand the energy exchange processes of urban areas. In this study, the high spatial resolution anthropogenic heat flux (AHF) quantification and spatial distribution analysis were conducted using multi-source data in the Beijing-Tianjin-Hebei region (BTH region) of China. First, the AH emission in district and city level were estimated using inventory method based on energy consumption and socio-economic statistical data; Then, AHF spatial quantification models were constructed based on high spatial resolution nighttime light (NTL) data and Point of interests (POI) data, and 130 m × 130 m gridded AHF quantification result in BTH region was realized; Finally, the potential numerical and spatial distribution patterns of AHF were analyzed using various indicators including contribution rate and aggregation index. The results show that: (1) The parameterized index constructed based on NTL and POI data shows a strong correlation with AHF, with R² ranging from 0.79 to 0.94 and a mean absolute error (MAE) value of 0.72 w·m⁻², which can be applied to the quantification of gridded AHF values with high resolution. The highest total AHF in the study area is 214 w·m⁻², and the average value is 2.24 w·m⁻². (2) Considering the sources of AHF, industrial emission sources in BTH region contribute the most to the total AHF, but commercial building emission sources in Beijing have a higher contribution, which can reach 33.8%. (3) Different types of AHF have different spatial aggregation levels. Commercial building emission and human metabolic emission have the highest aggregation level, and transportation emission has the lowest aggregation level.
اظهر المزيد [+] اقل [-]Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition النص الكامل
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
اظهر المزيد [+] اقل [-]