خيارات البحث
النتائج 1 - 10 من 243
Analysis of heavy metal concentration in some vegetables using atomic absorption spectroscopy
2021
Abrham, F. | Gholap, A.V.
This study assesses heavy metal levels in water, soil, and vegetables (swiss chard, lettuce, cabbage, collard green, tomato, green pepper and carrot) irrigated with waste water in Gamo, Ethiopia. The samples of soils, water, and vegetables were randomly collected, processed, and analyzed for heavy metals using atomic absorption spectrophotometry. The results obtained show that the irrigational water is profoundly contaminated with heavy metals Cd, Cr and Ni and Pb, Zn and Cu had the lowest concentration in irrigation water. The levels of Cd in Kulfo river area and Chamo Lake area and Ni in most of the farm soils were also found to be higher than the guideline values. The study also revealed that the mean levels of Cd in most vegetables and Cr and Pb in some vegetables were higher than the maximum recommended limits set by WHO/FAO. In general the results show that the highest concentration of the heavy metals was obtained from Kulfo river area compared to the Arbaminch textile share company area, Abaya Lake area, and Chamo Lake area. Cabbage was maximally contaminated with potential toxic elements followed by Swiss-chard, carrot, tomato, collard green, green pepper and lettuce. Hence, from kulfo river area frequent consumption of cabbage and Swiss chard may cause serious health risks to consumers. The levels of many elements were found to vary with location, suggesting localized inputs of the various contaminants related to industrial and other activities that generate wastewater. This study recommends regular monitoring of heavy metals in soils, waters, and foodstuffs to prevent excessive accrual in food chain.
اظهر المزيد [+] اقل [-]Heavy Metal Pollution in Soils and Vegetables from Suburban Regions of Nairobi, Kenya and their Community Health Implications
2022
Nyika, Joan | Dinka, Megersa
This study aimed at quantifying the heavy metal levels in soils and vegetables sampled from five suburban regions of Nairobi, Kenya. Using inductively coupled plasma- mass spectrometry (ICP-MS) the metals were quantified from the samples. The assayed heavy metals including Cd, Cr, Co. Cu, Fe, Hg, Mn, Ni, Pb, Zn and the metalloid arsenic were elevated beyond the reference values in both soils and vegetables. High pollutant levels in soils were affiliated to use of industrial and domestic wastewater for irrigation, application of heavy metal containing agrochemicals and geogenic sources of the pollutants. In collard leaves, the uptake of contaminated water via the roots and subsequent accumulation in the leaves was attributable to the observed results. The total hazard quotient (THQ) and hazard index (HI) as a result of arsenic and Hg was >1 in all sampled sites and >10, respectively for both indices and heavy metals. Similarly, the cancer risk (CR) and target cancer risk (TCR) from consumption of collard was greater than the recommended levels of 10-6 and 10-4, respectively with exception of Pb. The indices were indicative of negative non-carcinogenic and carcinogenic effects of consuming the vegetables to the community of the study area. The results of the study, though preliminary, suggest the need to safeguard the health of communities in the study area to ensure that they do not consume heavy metal contaminated vegetables due to the established health effects of such pollutants.
اظهر المزيد [+] اقل [-]Bio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium
2020
Hedayatzadeh, F. | Banaee, M. | Shayesteh, K.
In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L), cadmium (Cd) (second experiment) at one level (10 mg/L), and a combination of lead and cadmium (third experiment) again at two levels. After 23 days, roots and aerial parts of both plants have been dried for 48 hours at 70°C in an oven. Then, half gram (0.5 g) of the dried templates has been used to measure the accumulation of Pb and Cd by means of an atomic absorption spectrometer. The highest amount of Pb in radish and crest roots belong to 100 mg/L concentration and the combined Cd (10) + Pb (100) mg/L treatment, respectively, and the highest amount of Cd occurs in Cd (10) + Pb (50) for radish roots and in Cd (10) + Pb (100) combination for cress. Moreover, the Translocation Factor (TF), with a value below 1 and higher bio-concentration factor (BCF) in roots, compared to the aerial part of both radish and cress, seem to be due to the low capability of these plants to transfer Pb and Cd from roots to aerial part. There is a high potentiality for lead accumulation in the roots that prevent its transfer to the aerial part.
اظهر المزيد [+] اقل [-]Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter.
1996
Voutsa D. | Grimanis A. | Samara C.
Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks
2023
Gudda, Fredrick | Odinga, E.S. | Tang, L. | Waigi, M.G. | Wang, J. | Abdalmegeed, D. | Gao, Y.
Wastewater irrigation may introduce antibiotic residues in the soil-plant systems. This study aimed to investigate the uptake of tetracyclines by spinach and collard greens and assess associated ecological and human health risks. Synthetic wastewater spiked with 1 ppm and 10 ppm of oxytetracycline, doxycycline, and tetracycline was used to grow vegetables in a greenhouse pot experiment. The uptake and accumulation of the tetracyclines were low and residual concentrations in the soil were negligible. All the tetracyclines were detected at concentrations ranging from 1.68 to 51.41 μg/g (spinach) and 1.94–30.95 μg/g (collard greens). The accumulation rate was in a dose-response scenario with a bioconcentration factor of 6.34 mL/kg (spinach) and 2.64 mL/kg (collard greens). Oxytetracycline had the highest accumulation in leaves, followed by doxycycline and tetracycline, and the residual concentrations followed the same order. The highest residual concentration was in soils receiving 10 ppm oxytetracycline. Residual concentrations in the soil were lower than accumulated levels and exerted negligible ecological risks. Tetracyclines accumulation in spinach significantly differed between the vegetables demonstrating a subspecies difference in uptake and accumulation. Ecological risk quotient (RQ) and human health risk quotient (HQ) were below thresholds that would exert toxicity and resistance selection impacts. Although RQs and HQs are low (<0.1), this study shows that the vegetables accumulate tetracyclines from irrigation water, posing plausible human health risks to allergic individuals. Similarly, the ecological risks cannot be ignored because the synergistic and antagonistic effects of sublethal concentrations can perturb ecosystem processes.
اظهر المزيد [+] اقل [-]Status of Dieldrin in vegetable growing soils across a peri-urban agricultural area according to an adapted sampling strategy
2022
Colin, Félix | Cohen, Grégory J.V. | Delerue, Florian | Chéry, Philippe | Atteia, Olivier
Since the fifties, organochlorine pesticides (OCPs) had been used in agriculture to protect vegetables. Two decades after their ban by the Stockholm convention in 2001, OCPs are still present in agricultural soils inducing vegetable contamination with concentrations above Maximum Residue Level (MRL). This is a major concern for a 5 km² peri-urban vegetable growing valley located in the south west of France. In the present work, the sampling method was developed to clarify the spatial distribution of one OCP, Dieldrin, and its relationship with soil properties at the scale of study area. A total of 99 soil samples was collected for physicochemical analyses and Dieldrin concentrations. Results show Dieldrin concentrations in soils up to 204 μg kg⁻¹. The horizontal distribution of this pesticide is heterogeneous at the study area scale but homogeneous in each reference plot studied. About 85% of the contamination was located in the top soil layers (0–40 cm depth), but Dieldrin may still be quantified at a depth of 80 cm. Among all soil physicochemical parameters analysed, SOM was the most significantly related (P < 10⁻⁴) with Dieldrin concentrations, once different grain size fractions were considered. Moreover, results indicate a 33 times higher Dieldrin concentration and/or extractability for coarse sand than for other grain size fractions. These results show that the developed sampling method is adapted for the study area scale as it helps understanding the factors influencing the spatial distribution of Dieldrin. Historical amendments are the predominant factor for the horizontal contamination and deep ploughing for the vertical contamination. Also, the variations of coarse sand repartition in soils prevents identification of relationships between SOM and Dieldrin contamination in bulk soil. Further investigation is required to explain these relationships but these results highlight why no clear relationship between OCPs and SOM was previously identified.
اظهر المزيد [+] اقل [-]Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions
2022
Rokonuzzaman, MD. | Li, W.C. | Wu, C. | Ye, Z.H.
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers’ who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
اظهر المزيد [+] اقل [-]A comprehensive analysis on source-distribution-bioaccumulation-exposure risk of metal(loid)s in various vegetables in peri-urban areas of Shenzhen, China
2022
Wang, Beibei | Gao, Fei | Qin, Ning | Duan, Xiaoli | Li, Yujie | Cao, Suzhen
The health risk induced by metal(loid)s in crops are becoming increasingly serious. In this study, eight major vegetables and rhizosphere soils were collected in a peri-urban area with intense electronic information manufacturing activities. The source, distribution and bioaccumulation of six typical metal(loid)s in different vegetable species were analyzed, and exposure risk through vegetable ingestion was estimated. Results showed that vegetables and agricultural soils in the study area suffered from serious metal(loid)s pollution, especially for Cd and Pb. The bioaccumulation capacity differed greatly among individual metal(loid)s and vegetable categories. In general, the highest transfer factors (TF) for Cd, Pb, and As were found in leafy vegetables, while leguminous vegetables had the highest TF of Cu and Zn and root vegetables had the highest TF for Cr. Significant correlations were found between concentrations in vegetables and rhizosphere soils for most metal(loid)s, the exceptions being Pb and Zn. The enrichment of Pb, Cd, Cr and As was mainly attributed to electronic information manufacturing activities, while the enrichment of Zn, Cu and Cd was associated with the application of commercial fertilizers and pesticides. The health risk associated with vegetable intake decreased in the order of leafy > fruit > leguminous > root vegetables. Leafy vegetables were identified as the category with the highest risk, with the mean risk value of 1.26. Cd was the major risk element for leafy vegetables. The non-carcinogenic risks estimated for leguminous and root vegetables were under the acceptable level. In conclusion, special attention should be paid to the health risks of toxic metal(loid)s in leafy vegetables in peri-urban areas with intense electronic information manufacturing activities. In order to minimize health risk, it is necessary to identify low-risk crops based on a comprehensive consideration of the metal(loid)s’ pollution characteristics, transfer factors and local people's consumption behaviors.
اظهر المزيد [+] اقل [-]The immobilization, plant uptake and translocation of cadmium in a soil-pakchoi (Brassica chinensis L.) system amended with various sugarcane bagasse-based materials
2022
Liu, Guofei | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
Many organic materials have been used to decrease heavy-metal bioavailability in soil via in-situ remediation due to its high efficiency and easy operation; meanwhile, cheap materials have also been pursued to decrease the cost of remediation. Agricultural wastes exhibit their potential in remediation materials due to their low cost; however, raw agricultural wastes have a low ability to immobilize heavy metals in soil. Attempts have been made to modify agricultural wastes to improve the efficiency of heavy-metal passivation. In this study, novel agricultural waste-based materials, raw sugarcane bagasse (SB), citric acid modified (SSB) and citric-acid/Fe₃O₄ modified (MSB) sugarcane bagasse at 0.5% and 1% addition rates, were compared for their effectiveness in soil Cd passivation and Cd accumulations in pakchoi plants in a 30-day pot experiment. The addition of SB did not decrease soil bioavailable Cd effectively and slightly decreased Cd accumulation in plant roots and leaves. In comparison, SSB and MSB exhibited a great potential to decrease the transformation, translocation and accumulation of Cd with the decrease being greater at 1% than 0.5% rate in the soil-pakchoi system. For example, the addition of SSB and MSB at 0.5% decreased the concentration of Cd in leaves by 10%, and 16%, and at 1% decreased the concentration by 25% and 30%, respectively. High pH and abundant functional groups of three amendments played important roles in Cd immobilization. The enhanced microbial activities might also contribute to Cd passivation. However, plant growth was decreased in the amended treatments except SSB at 0.5% rate. The results suggest that citric-acid-modified sugarcane bagasse at addition rate of 0.5% has a potential to immobilize Cd in soil and decrease Cd accumulation in edible part of pakchoi effectively without decreasing vegetable growth.
اظهر المزيد [+] اقل [-]Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis
2022
Huo, Yuxin | Dijkstra, Feike A. | Possell, Malcolm | Singh, Balwant
The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.
اظهر المزيد [+] اقل [-]