خيارات البحث
النتائج 1 - 10 من 110
Hygroscopic ramie fabrics for recovering highly viscous low sulfur fuel oil
2022
Lee, Young-A | Park, Young Cheol | Kwon, Ochang | Kim, Seong Jin | Chung, Seok | Moon, Myoung-Woon
Low sulfur fuel oils (LSFOs) with less than 0.5% sulfur content have been mandated for marine vessels by the International Maritime Organization since 2020. However, owing to the low dispersibility and high viscosity of LSFOs, their oceanic spills are difficult to clean using conventional response systems. In this study, we propose a superhydrophilic and hygroscopic ramie to clean spilled LSFO. To this end, a raw ramie fiber, which is intrinsically hydrophobic, was treated using a mild alkali to remove its waxy, rough, and gummy veneer and reveal a smooth surface. This substantially improved its hygroscopic nature, superhydrophilicity, and water-retention, while preserving its mechanical durability in dry and wet environments. The hygroscopic ramie exhibited underwater superoleophobicity and self-cleaning abilities against highly adhesive LSFOs. Two proofs-of-concept are demonstrated in this study—an oil-proof glove for maximizing oil repellency and a direct oil-scooping device for simple and continuous recovery of spilled oil with high efficiency.
اظهر المزيد [+] اقل [-]Short-term effects of cold spells on plasma viscosity: Results from the KORA cohort study in Augsburg, Germany
2022
Ni, Wenli | Schneider, Alexandra | Wolf, Kathrin | Zhang, Siqi | Chen, Kai | Koenig, Wolfgang | Peters, Annette | Breitner, Susanne
As the underlying mechanisms of the adverse effects of cold spells on cardiac events are not well understood, we explored the effects of cold spells on plasma viscosity, a blood parameter linked to cardiovascular disease. This cross-sectional study involved 3622 participants from the KORA S1 Study (1984–1985), performed in Augsburg, Germany. Exposure data was obtained from the Bavarian State Office for the Environment. Cold spells were defined as two or more consecutive days with daily mean temperatures below the 3ʳᵈ, 5ᵗʰ, or 10ᵗʰ percentile of the distribution. The effects of cold spells on plasma viscosity were explored by generalized additive models with distributed lag nonlinear models (DLNM). We estimated cumulative effects at lags 0–1, 0–6, 0–13, 0–20, and 0–27 days separately. Cold spells (mean temperature <3ʳᵈ, <5ᵗʰ or <10ᵗʰ percentile) were significantly associated with an increase in plasma viscosity with a lag of 0–1 days [%change of geometric mean (95% confidence interval): 1.35 (0.06–2.68), 1.35 (0.06–2.68), and 2.49 (0.34–4.69), respectively], and a lag of 0–27 days [18.81 (8.97–29.54), 17.85 (8.29–28.25), and 7.41 (3.35–11.0), respectively]. For the analysis with mean temperature <3ʳᵈ or 10ᵗʰ percentile, we also observed significant associations at lag 0–20 days [8.34 (0.43–16.88), and 4.96 (1.68, 8.35), respectively]. We found that cold spells had significant immediate and longer lagged effects on plasma viscosity. This finding supports the complex interplay of multiple mechanisms of cold on adverse cardiac events and enriches the knowledge about how cold exposure acts on the human body.
اظهر المزيد [+] اقل [-]Synthesis and performance evaluation of plastic waste aerogel as sustainable and reusable oil absorbent
2021
Pawar, Atul A. | Kim, Ayoung | Kim, Hern
Direct utilization of waste polyethylene terephthalate (PET) from the environment to form highly porous aerogel technology for oil absorption is an attractive approach from the view point of green chemistry. However, the oil absorption reaction is limited by low oil absorption capacity and less stability. For now, silica aerogel are used to solve these problem. Our goal is to substitute to these silica aerogel with PET aerogel technology. Herein, we have prepared an environmental waste PET based aerogel with 1.0:0.5 wt% PET, polyvinyl alcohol (PVA), and glutaraldehyde (GA) 0.2% v/v were dispersed in 10 mL DI water, followed by homogenization (30 min), sonication (10 min), and ageing (2 h) at 70 °C. To escape macroscopic cracking, cooling (8 h) at 4 °C was followed by freezing (6 h), freeze drying at −80 °C, and 5 mTorr for 18 h. The hybrid PET aerogel displays excellent performance towards oil absorption. Notably it showed high absorption capacity towards the different oils about 21–40 times its own weight, depending on the viscosity and density of the oil and solvents within 15–35 s, 25 °C, and 2 × 2 cm aerogel size. In addition, the aerogel shows there is no change in structure after several recycles due to high mechanical strength. Furthermore, because of the PET aerogel's high porosity (99.74%) and low density (0.0311 g/cm³), close bonding between PET-PVA occurs. Therefore, aerogel shows hydrophobic nature, good mechanical strength, high thermal stability, arrangement of the interconnected fibrillar pore network offers a high surface to volume ratio, low surface energy, high surface roughness, and more reusability. All these parameters are responsible for high oil absorption.
اظهر المزيد [+] اقل [-]Bio-based dispersants for fuel oil spill remediation based on the Hydrophilic-Lipophilic Deviation (HLD) concept and Box-Behnken design
2021
Nawavimarn, Parisarin | Rongsayamanont, Witchaya | Subsanguan, Tipsuda | Luepromchai, Ekawan
The high density and viscosity of fuel oil leads to its prolonged persistence in the environment and causes widespread contamination. Dispersants with a low environmental impact are necessary for fuel oil spill remediation. This study aimed to formulate bio-based dispersants by mixing anionic biosurfactant (lipopeptides from Bacillus subtilis GY19) with nonionic oleochemical surfactant (Dehydol LS7TH). The synergistic effect of the anionic-nonionic surfactant mixture produced a Winsor Type III microemulsion, which promoted petroleum mobilization. The hydrophilic-lipophilic deviation (HLD) equations for ionic and nonionic surfactant mixtures were compared, and it was found that the ionic equation was applicable for the calculation of lipopeptides and Dehydol LS7TH concentrations. The best formula contained 6.6% w/v lipopeptides and 11.9% w/v Dehydol LS7TH in seawater, and its dispersion effectiveness for bunker fuels A and C was 92% and 78%, respectively. The application of bio-based dispersants in water sources was optimized by Box-Behnken design. The efficiency of the bio-based dispersant was affected by the dispersant-to-oil ratios (DORs) but not by the water salinity. A suitable range of DORs for different oil contamination levels could be identified from the response surface plot. The dispersed fuel oil was further degraded by adding an oil-degrading bacterial consortium to the chemically enhanced water accommodated fractions (CEWAFs). After 7 days of incubation, the concentration of fuel oil was reduced from 3692 mg/L to 356 mg/L (88% removal efficiency). On the other hand, the abiotic control removed less than 40% fuel oil from the CEWAFs. This bio-based dispersant had an efficiency comparable to that of a commercial dispersant. The process of dispersant formulation and optimization could be applied to other surfactant mixtures.
اظهر المزيد [+] اقل [-]Enhancing inhibition of disinfection byproducts formation and opportunistic pathogens growth during drinking water distribution by Fe2O3/Coconut shell activated carbon
2021
Xing, Xueci | Li, Tong | Bi, Zhihao | Qi, Peng | Li, Zesong | Wang, Haibo | Lyu, Lai | Gao, Yaowen | Hu, Jun
The effects of biological activated carbon treatment using Fe₂O₃ modified coconut shell-based activated carbon (Fe/CAC) were investigated on the occurrence of opportunistic pathogens (OPs) and formation of disinfection by-products (DBPs) in simulated drinking water distribution systems (DWDSs) with unmodified CAC as a reference. In the effluent of annular reactor (AR) with Fe/CAC, the OPs growth and DBPs formation were inhibited greatly. Based on the differential pulse voltammetry and dehydrogenase activity tests, it was verified that extracellular electron transfer was enhanced in the attached biofilms of Fe/CAC, hence improving the microbial metabolic activity and biological removal of organic matter especially DBPs precursors. Meanwhile, the extracellular polymeric substances (EPS) on the surface of Fe/CAC exhibited stronger viscosity, higher flocculating efficiency and better mechanical stability, avoiding bacteria or small-scale biofilms falling off into the water. Consequently, the microbial biomass and EPS substances amount decreased markedly in the effluent of Fe/CAC filter. More importantly, Fe/CAC did significantly enhance the shaping role on microbial community of downstream DWDSs, continuously excluding OPs advantage and inhibiting EPS production. The weakening of EPS in DWDSs resulted in decrease of microbial chlorine-resistance ability and EPS-derived DBPs precursors supply. Therefore, the deterioration of water quality in DWDSs was inhibited greatly, sustainably maintaining the safety of tap water. Our findings indicated that optimizing biological activated carbon treatment by interface modification is a promising method for improving water quality in DWDSs.
اظهر المزيد [+] اقل [-]The bioavailability of oil droplets trapped in river gravel by hyporheic flows
2021
Adams, Julie E. | Brown, R Stephen | Hodson, Peter V.
Little is known about the fate of oil spills in rivers. Hyporheic flows of water through river sediments exchange surface and groundwater and create upwelling and downwelling zones that are important for fish spawning and embryo development. Risk assessments of oil spills to rivers do not consider the potential for hyporheic flows to carry oil droplets into sediments and the potential for prolonged exposure of fish to trapped oil. This project assessed whether oil droplets in water flowing through gravel will be trapped and whether hydrocarbons partitioning from trapped oil droplets are bioavailable to fish. Columns packed with gravel were injected with oil-in-water dispersions prepared with light crude, medium crude, diluted bitumens, and heavy fuel oil to generate a series of oil droplet loadings. The concentrations of oil trapped in the gravel increased with oil loading and viscosity. When the columns were perfused with clean water, oil concentrations in column effluents decreased to the detection limit within the first week of water flow, with sporadically higher concentrations associated with oil droplet release. Despite the low concentrations of hydrocarbons measured in column effluent, hydrocarbons were bioavailable to juvenile rainbow trout (Oncorhynchus mykiss) for more than three weeks of water flow, as indicated by strong induction of liver ethoxyresorufin-o-deethylase activity. These findings indicate that ecological risk assessments and spill response should identify and protect areas in rivers sensitive to contaminant trapping.
اظهر المزيد [+] اقل [-]Evaporation rates and pollutants emission from heated cooking oils and influencing factors
2020
Adeniran, Jamiu Adetayo | Yusuf, Rafiu Olasunkanmi | Abdulkadir, Mariam Oyinkansola | Yusuf, Muhammad-Najeeb O. | Abdulraheem, Khadija Abdulkareem | Adeoye, Babatunde Kazeem | Sonibare, Jacob Ademola | Du, Mingxi
The heating of edible oils during cooking activities promotes the emissions of pollutants that have adverse impacts on the health of humans. This study investigated the evaporative emissions of fifteen (15) commonly used cooking oils. Split-plot experimental design under the response surface methodology framework was used to study singular and interaction effects of influencing parameters (temperature, volume of cooking oil and time) on cooking oil evaporation rate and pollutants emissions (i.e. Particulate matter of aerodynamic diameter ≤1 μm (PM₁.₀); ≤2.5 μm (PM₂.₅); ≤10 μm (PM₁₀); Total Suspended Particulate (TSP); Total Volatile Organic Compounds -TVOCs, and Carbon Monoxide- CO) on a groundnut oil sample that served as a case study. Obtained values of density, viscosity, kinematic viscosity, smoke, flash and fire points were; 873–917 kg/m³; 1.12–9.7 kg/ms; 2.4–3.4 m²/s; 96 -100 °C; 124–179 °C and 142–186 °C, respectively. The role of temperature as the most significant parameter influencing the rate of evaporative emissions was established. Evaporation rate and pollutants emission from unrefined samples were the highest. The restricted maximum likelihood (REML) analysis results suggested a strong relationship between the actual values and the predicted values as R-squared values obtained were greater than 0.8 for all the responses. These results suggest that minimal rates of evaporation and pollutants emission from heating cooking oils can be achieved with a high volume of the cooking oil at moderate temperature levels.
اظهر المزيد [+] اقل [-]Degradation of PAHs during long range transport based on simultaneous measurements at Tuoji Island, China, and at Fukue Island and Cape Hedo, Japan
2020
Shimada, Kojiro | Nohchi, Masayuki | Yang, Xiaoyang | Sugiyama, Taichi | Miura, Kaori | Takami, Akinori | Satō, Kei | Chen, Xuan | Kato, Shungo | Kajii, Yoshizumi | Meng, Fan | Hatakeyama, Shirō
We investigated the degradation of polycyclic aromatic hydrocarbons (PAHs) during long-range transport. Aerosols were collected simultaneously at remote sites on Tuoji Island, China; Fukue Island, Japan; and the Cape Hedo Atmosphere and Aerosol Measurement Station (CHAAMS), Okinawa, Japan in April, October, and December from 2012 to 2013. These remote sites were convenient for investigating the degradation of PAHs during long-range transport. PAHs were analyzed via gas chromatography/mass spectrometry. We identified air masses that passed over all sites and combined our measurements with a chemical transport model. We estimated the relative contributions of the PAHs at the three sites by normalizing the PAH concentrations to elemental carbon. Benzo[a]pyrene persisted in 5–16% of samples. The results of this study are consistent with laboratory studies in which secondary organic aerosol (SOA) coatings protected PAHs from degradation by ozone. We detected an inhibition of the degradation PAHs by SOA coatings by collecting PAHs simultaneously at the three sites. To elucidate the major sources of the SOAs, we carried out a positive matrix factorization analysis to identify the major sources of SOA coating, which controls the lifetime of PAHs. In spring and winter, the contribution of vehicle emissions was higher (46%) at Tuoji Island than at CHAAMS (13%). In contrast, the contribution of coal combustion was higher at CHAAMS (59%) than at Tuoji Island (28%). This result implies that during long-range transport, PAHs derived from coal combustion are more slowly degraded than PAHs derived from vehicle emissions. We found that the viscosity of SOA coatings derived from vehicle emissions in China was low, and the corresponding PAHs were rapidly degraded. In contrast, the viscosity of SOA coatings derived from coal combustion was high, and degradation of the corresponding PAHs was relatively slow. These results imply that PAHs derived from coal combustion have long lifetime.
اظهر المزيد [+] اقل [-]Reduction of clog matter in constructed wetlands by metabolism of Eisenia foetida: Process and modeling
2018
Ye, Jianfeng | Xu, Zuxin | Chen, Hao | Wang, Liang | Benoit, Gaboury
Introducing of earthworms to constructed wetlands (CWs) has been considered as a new approach to solve the clogging problems in the long-established systems. Despite its potential advantage, the correlational researches are still in the stage of preliminary observation and speculation. This paper presents a comprehensive and in-depth research about the positive effects of earthworms (Eisenia foetida) on clog matter (CM) reduction through different pathways, including in vivo metabolism and uptake, conversion, transport, and promotion of microorganism quantities. The results showed that the metabolism and uptake by Eisenia foetida could effectively reduce the CM content at an average removal rate of 0.155 mg g−1 d−1, which was obviously higher than the rate of CM decomposition by microorganisms alone. Through the metabolism of earthworms, the amounts of proteins and polysaccharides in CM were decreased, while the amounts of humin and nucleic acids were increased. Simultaneously, the viscosity of CM was reduced by 0.0082 mPa s g−1 d−1, and the quantity of microorganisms was increased by 0.0109 mg g−1 d−1, which finally made the treated CM can be easily washed away and decomposed. Furthermore, earthworms could reduce the CM content in the clogging layer by transporting the metabolic products out. A regression model was further performed for describing the interaction between earthworm and CM. The simulated value of porosity fitted well with the measured one, suggesting that the earthworms can increase the substrate porosity at a rate of 0.33 mL g−1 d−1. This study quantitively depicted the mechanisms of earthworms on the decrement of CM content in CWs, which is of great benefit for the engineering management of constructed wetlands in the future. We also proposed that the density of introduced earthworms should exceed a certain threshold for effectively increasing the substrate porosity and solving the clogging problems.
اظهر المزيد [+] اقل [-]Measuring the fate of different diluted bitumen products in coastal surface waters
2020
Ortmann, Alice C. | Cobanli, Susan E. | Wohlgeschaffen, Gary | MacDonald, Jessica | Gladwell, Alison | Davis, Andrew | Robinson, Brian | Mason, Jennifer | King, Thomas L.
Diluted bitumens are produced by adding lower viscosity diluent to highly viscous bitumen to enable it to flow through pipelines and thus may behave differently than conventional oils when spilled into coastal seawater. Simulated surface spills using three different diluted bitumen products were carried out in May, July and November and water column hydrocarbons were monitored over a 14 day period. Volatile and total petroleum hydrocarbons varied in the water column depending on season and type of diluent. In summer, products diluted with synthetic crude or a mixture of condensate and crude released droplets into the water column. Diluted bitumen did not sink to the bottom of the enclosures with surface slicks showing a range of weathering after 14 d. With most of the diluted bitumen product remaining on the surface for 14 d, a rapid conventional clean up response may be effective in low energy, coastal waters.
اظهر المزيد [+] اقل [-]