خيارات البحث
النتائج 1 - 10 من 20
Effect of long term exposure to hydrogen fluoride on grapevines.
1984
Murray F.
Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid النص الكامل
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
اظهر المزيد [+] اقل [-]Comparison of different stomatal conductance algorithms for ozone flux modelling النص الكامل
2007
Büker, P. | Emberson, L.D. | Ashmore, M.R. | Cambridge, H.M. | Jacobs, C.M.J. | Massman, W.J. | Müller, J. | Nikolov, N. | Novak, K. | Oksanen, E.
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221-224.] algorithm for calculating stomatal conductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An).
اظهر المزيد [+] اقل [-]Multi-omics analyses on the response mechanisms of ‘Shine Muscat’ grapevine to low degree of excess copper stress (Low-ECS) النص الكامل
2021
Chen, Mengxia | Fang, Xiang | Wang, Zicheng | Shangguan, Lingfei | Liu, Tianhua | Chen, Chun | Liu, Zhongjie | Ge, Mengqing | Zhang, Chuan | Zheng, Ting | Fang, Jinggui
Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the ‘Shine Muscat’ (‘SM’) grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in ‘SM’ grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the ‘SM’ grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of ‘SM’ grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.
اظهر المزيد [+] اقل [-]Evidence of widespread ozone-induced visible injury on plants in Beijing, China النص الكامل
2014
Feng, Zhaozhong | Sun, Jingsong | Wan, Wuxing | Hu, Enzhu | Calatayud, Vicent
Despite the high ozone levels measured in China, and in Beijing in particular, reports of ozone-induced visible injury in vegetation are very scarce. Visible injury was investigated on July and August 2013 in the main parks, forest and agricultural areas of Beijing. Ozone injury was widespread in the area, being observed in 28 different species. Symptoms were more frequent in rural areas and mountains from northern Beijing, downwind from the city, and less frequent in city gardens. Among crops, injury to different types of beans (genera Phaseolus, Canavalia and Vigna) was common, and it was also observed in watermelon, grape vine, and in gourds. Native species such as ailanthus, several pines and ash species were also symptomatic. The black locust, the rose of Sharon and the Japanese morning glory were among the injured ornamental plants. Target species for broader bio-monitoring surveys in temperate China have been identified.
اظهر المزيد [+] اقل [-]Fluorine in vegetation due to an uncontrolled release of gaseous fluorides from a glassworks: A case study of measurement uncertainty, dispersion pattern and compliance with regulation النص الكامل
2019
Štepec, Dona | Tavčar, Gašper | Ponikvar-Svet, Maja
This study was initiated after the appearance of chlorotic and necrotic lesions on vegetation in the vicinity of a glassworks. The aim was to establish whether the cause was an uncontrolled release of gaseous fluorides. Five different plant species (Norway spruce, peach, common hornbeam, common bean, common grape vine) were collected in the influenced area, and the fluorine (F) content was determined by a fluoride ion selective electrode after prior total sample decomposition by alkaline carbonate fusion. The measurement results were reported together with their measurement uncertainties (MUs), which were evaluated according to the Guide to the Expression of Uncertainty in Measurement. The F contents at comparable distances from the emitter and in a clean area, free from natural or anthropogenic fluoride emissions, were 87–676 and 10 μg g⁻¹, respectively, thereby confirming the release of gaseous fluorides from the glassworks. The F contents in samples of Norway spruce taken at various radial distances from the emitter suggest that the emitted gaseous fluorides were spread about evenly in all directions from the source following an inverse-power function. Estimated distances at which the F content would decrease to 50 μg g⁻¹ (allowed maximum content of F in feeding stuffs) and 21 μg g⁻¹ (maximum fluoride content in vegetables and fruits in relation to the upper limit of fluoride intake for humans) were 378 m and 571 m, respectively, from the emitter. Evaluation of our results for compliance with specification revealed a lack of regulation on fluoride content in the diet of humans and animals as well as a lack of guidelines on how to take into account MU.
اظهر المزيد [+] اقل [-]Gating in grapevine: Relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis النص الكامل
2009
Petit, Anne-Noëlle | Fontaine, Florence | Clement, Christophe | Vaillant-Gaveau, Nathalie
The aim of this study was to determine the impact of the fludioxonil (fdx) fungicide on the diurnal fluctuation in grapevine photosynthesis. Therefore, fdx treatment was performed at the end of flowering, at 8 am, 12 am or 7 pm. The study was performed in experimental field and several photosynthesis parameters were followed one day after treatment. Morning fdx treatment induced (i) a significant and simultaneous drop of both photosynthesis (Pn) and stomatal conductance between 8 am and 4 pm and (ii) an increase of intercellular CO2 concentration when compared to control plants. On the contrary, evening fdx treatment did not affect Pn whereas midday treatment caused Pn increase after 4 pm. These data suggest that (i) morning fdx treatment results in a non-stomatal limitation of Pn, (ii) midday treatment is more suitable to treat grapevine with fdx and (iii) a phenomenon of gating was noticed. The period of fdx spraying was an important parameter in stress response: the midday fdx treatment is more suitable to treat grapevine with fdx.
اظهر المزيد [+] اقل [-]Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline النص الكامل
2021
Gohari, Gholamreza | Panahirad, Sima | Sepehri, Nasrin | Akbari, Ali | Zahedi, Seyed Morteza | Jafari, Hessam | Dadpour, Mohammad Reza | Fotopoulos, Vasileios
Salinity has destructive impacts in plant production; therefore, application of new approaches such as nanotechnology and plant priming is attracting increasing attention as an innovative means to ameliorate salt stress effects. Considering the unique properties and recorded beneficial influence of carbon quantum dots (CQDs) and proline in plant growth and physiological parameters when applied individually, their conjugation in the form of carbon quantum dot nanoparticles functionalized by proline (Pro-CQDs NPs) could lead to synergistic effects. Accordingly, an experiment was conducted to evaluate the impact of this advanced nanomaterial (Pro-CQDs NPs) as a chemical priming agent, in grapevine plants cv. ‘Rasha’. For this purpose, proline, CQDs, and Pro-CQDs NPs at three concentrations (0, 50, and 100 mg L⁻¹) were applied exogenously 48 h prior to salinity stress (0 and 100 mM NaCl) that was imposed for a month. Three days after imposing salt stress, an array of biochemical measurements was recorded, while agronomic and some physiological parameters were noted at the end of the stress period. Results revealed that proline treatment at both concentrations, as well as CQDs and Pro-CQDs NPs at low concentration, positively affected grapevine plants under both non-stress and stress conditions. Specifically, the application of proline at 100 mg L⁻¹ and Pro-CQDs NPs at 50 mg L⁻¹ resulted in optimal performance identifying 50 mg L⁻¹ Pro-CQDs NPs as the optimal treatment. Proline treatment at 100 mg L⁻¹ increased leaf fresh weight (FW) and dry weight (DW); chl a, b, and proline content; SOD activity under both non-stress and stress conditions; Y (II) under salinity and carotenoid content; and CAT activity under control conditions. Pro-CQDs NP treatment at 50 mg L⁻¹ enhanced total phenol, anthocyanin, and Fᵛ/Fₒ, as well as APX and GP activities under both conditions, while increasing carotenoid, Y (II), Fᵛ/Fₒ, and CAT activity under salinity. Furthermore, it decreased MDA and H₂O₂ contents at both conditions and EL and Y (NO) under salt stress. Overall, conjugation of CQDs with proline at 50 mg L⁻¹ resulted in further improving the protective effect of proline application at 100 mg L⁻¹. Therefore, functionalization of NPs with chemical priming agents appears to be an effective means of optimizing plant-priming approaches towards efficient amelioration of abiotic stress–related damage in plants.
اظهر المزيد [+] اقل [-]Transfer of Copper and Zinc from Soil to Grapevine-Derived Products in Young and Centenarian Vineyards النص الكامل
2019
Hummes, Ana Paula | Bortoluzzi, Edson Campanhola | Tonini, Vanei | da Silva, Leila Picolli | Petry, Claudia
Application of fungicides on grapevines is the main source of soil contamination by copper and zinc. Studies on this issue in relatively young grapevines are common; however, studies that elucidate the metal transfer in a soil-plant-food production system in a centenarian vineyard are scarce. The present work was aimed at tracing the copper and zinc accumulation in three different compartments—soil, plant, and vine products—in young and centenarian vineyards. Soil samples were collected in the middle plant row and rhizosphere positions of the vineyards; samples of root and leaf tissue and of grape juice and wine from these vineyards were also collected. In the centenarian vineyard, the soil available copper, regardless of vineyard position, reached 1100 mg kg⁻¹. Copper in root and leaf tissues reached 12,300 mg kg⁻¹ and 6800 mg kg⁻¹, respectively. In grape juice and wine, copper was 9.08 mg L⁻¹ and 0.78 mg L⁻¹, respectively. The roots retained most part of the metals reducing their transfer through the system. However, Cu levels in the grape juice from the centenarian vineyard exceeded by 908% the limit established by Brazilian and international norms. Zinc concentrations in soil and vine products were within the permitted level. Finally, the magnitude of metal transfer and accumulation is due to decades of cupric fungicide application and varies according to the compartment evaluated. The findings will provide information to rethink the vineyard agricultural practices in order to avoid environmental contamination by metals and compromising the whole food chain.
اظهر المزيد [+] اقل [-]Formation of chlorinated disinfection by-products in viticulture النص الكامل
2009
Barhorst, Jan Bernd | Kubiak, Roland
Background, aim and scope The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter 'adsorbable organic halogens' (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography-mass spectrometry. Results Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.
اظهر المزيد [+] اقل [-]