خيارات البحث
النتائج 1 - 9 من 9
Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue
2009
Cabidoche, Y.M. | Achard, R. | Cattan, P. | Clermont-Dauphin, C. | Massat, F. | Sansoulet, J.
Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol. Soil and water contamination by chlordecone will persist for several centuries in the French West Indies, because the only decontamination is through leaching by drainage water.
اظهر المزيد [+] اقل [-]Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands – Maritime Antarctica
2022
Centurion, VB | Silva, JB | Duarte, AWF | Rosa, LH | Oliveira, VM
Whalers Bay, in Deception Island, has one of the most anthropogenically impacted areas in Maritime Antarctica. However, considering the volcanic nature (high concentrations of heavy metals) of Deception Island's soils, this putative anthropogenic impact should be carefully investigated. In this context, the objective of this study was to compare resistome profiles of impacted and non-impacted areas in Deception Island (Whalers Bay, Crater Lake, and Fumarole Bay) and Livingston Island (Hannah Point) in order to investigate the microbiome tolerance/resistance mechanisms selected as a function of environmental drivers. Metagenomics was used to search for genes conferring resistance/tolerance to antibiotics, biocides, and heavy metals. Whalers Bay has a greater diversity of antibiotic, biocide, and heavy metal resistance classes found in its microbiomes. However, Hannah Point, at Livingston Island, has a greater abundance of antibiotic and biocide resistance/tolerance genes. The microbiome of Deception Island's non-impacted areas (Crater Lake and Fumarole Bay) showed resistance/tolerance genes almost entirely to heavy metals. Pb was found in higher concentrations in Whalers Bay soil in comparison to the other areas, indicating human contamination. The non-metric multidimensional scaling (NMDS) analysis revealed that Pb concentrations influenced resistome profiles in Whalers Bay soil. Despite the effect of Pb on the microbial communities of Whalers Bay, most heavy metal concentrations did not have a significant impact on resistome genes, suggesting that the volcanic soil heavy metal concentration of Deception Island has little biological influence.
اظهر المزيد [+] اقل [-]Environmental fate of chlordecone in coastal habitats: recent studies conducted in Guadeloupe and Martinique (Lesser Antilles)
2022
Dromard, Charlotte R. | Devault, Damien A. | Bouchon-Navaro, Yolande | Allénou, Jean-Pierre | Budzinski, Hélène | Cordonnier, Sébastien | Tapie, Nathalie | Reynal, Lionel | Lemoine, Soazig | Thomé, Jean-Pierre | Thouard, Emmanuel | Monti, Dominique | Bouchon, Claude
The organochlorine pollution by chlordecone, an insecticide spread in the past in banana plantations, is now recognized as a major ecological, economic, and social crisis in Guadeloupe and Martinique Islands. Due to its physical and chemical properties, this molecule is particularly persistent in the natural environment. Volcanic soil of Guadeloupe and Martinique contain allophanes (amorphous clays), which favor chlordecone trapping due to their structure and physical properties. Thus, with this trapping ability, allophanes serve as a vector allowing chlordecone to contaminate runoff waters and, finally, the sea. In the present publication, several studies recently conducted in the Lesser Antilles have been compiled in order to evaluate the desorption of chlordecone from allophanes when arriving in the estuarine environment and to determine the transfer of chlordecone along marine trophic food webs. The experiments showed that 20% of the initial quantity of chlordecone was released from allophanes in estuarine conditions and 10% in the marine environment. These results could explain the high level of contamination found in the suspended organic matter and zooplankton in the coastal areas located downstream of the contaminated watersheds. The contamination of the marine food webs of mangroves, seagrass beds, and coral reefs is dominated by a contamination “by bath” in littoral waters containing chlordecone and by bioamplification seawards.
اظهر المزيد [+] اقل [-]Purification effect evaluation of the designed new volcanic soil adsorption material containing bioreactor for eutrophic water treatment
2021
Fu, Huiling | Ding, Linxian | Zhai, Jingyu | Wang, Xuesong
The purpose of this study was to investigate the purification effect of a new adsorption material containing bioreactor and the critical role of viable but non-culturable (VBNC) bacteria in a eutrophication ecosystem. Major water quality parameters of the prepared eutrophic water were determined, and the microbial community was analyzed during 2 years. The results showed that removal rates of total phosphorus (TP), total nitrogen (TN), chlorophyll-a (Chl-a), and chemical oxygen demand (COD) were 90.7–95.9%, 84.5–92.4%, 87.9–95.8%, and 68.3–82.7%, respectively, indicating the high efficiency of the bioreactor in the eutrophic water treatment. Although the bioreactor had been operated for 2 years, water from the treatment group was much clearer and odorless than from the control group, exhibiting the long service life of the bioreactor. Stopping operation in August caused significant decrease of the removal rates of major water quality parameters (p < 0.05). This operational stop event and high temperature in summer exerted a dual effect on the bioreactor, whereas the impact could be minimized when the bioreactor was running. Moreover, the total bacteria under +Rpf (active resuscitation-promoting factor) treatment were higher than under −Rpf (inactive resuscitation-promoting factor) treatment, implying that Rpf could resuscitate VBNC bacteria in the eutrophication ecosystem. Nine strains of VBNC bacteria were isolated based on the BLAST results of the 16S rRNA gene. Also, these bacteria might contribute to the eutrophic water treatment based on their functions of phosphorus collecting and denitrification. These results provided new insights for engineering technology innovations, and consequently these findings had benefits in eutrophic water treatment.
اظهر المزيد [+] اقل [-]Effects of biochar, compost, and biochar-compost on soil total nitrogen and available phosphorus concentrations in a corn field in Papua New Guinea
2021
Hannet, Godfrey | Singh, Kanika | Fidelis, Chris | Farrar, Michael B. | Muqaddas, Bushra | Bai, Shahla Hosseini
Replenishing soil nutrient particularly total nitrogen (TN) and available phosphorus (P) is important to sustain soil health for food production. Organic amendments such as compost and biochar are commonly applied to improve soil nutrient retention especially N and P. In farms, biochar is usually applied once followed by applying other organic amendment applied in their full rates. Both form and rate of organic amendments can affect soil nutrient concentrations particularly in short term. This study aimed to examine the effects of compost and mixture of compost with biochar (both at full rates) on soil nutrient concentrations in short term. A randomised complete block filed experiment with eight replicates was used for this study. The effects of biochar (5 t/ha) only, compost (at the rates of 10 t/ha, 25 t/ha and 35 t/ha) and biochar mixed with compost (5 t/ha and 10 t/ha, respectively) on soil nutrient concentrations compared with control were explored in a corn field. Compost treatment at the rate of 35 t/ha had significantly higher TN, available P, calcium (Ca) and iron (Fe) compared with other treatments and control. Soil potassium (K) levels remained unchanged among all treatments. Biochar only treatment had significantly higher available P and Ca concentrations compared with biochar mixed with compost treatment. Compost application at higher rate (35 t/ha) proved best practice to significantly increase TN and available P concentrations in short term. Significantly higher available P concentration in biochar only treatment compared with the biochar mixed with compost treatment could have been associated with stimulation of P immobilisation when biochar was mixed with compost. Our results indicated that the form and rate of organic amendments in short term cropping systems are important to be considered while applying to a volcanic soil to ensure N and P availability for plants are not compromised.
اظهر المزيد [+] اقل [-]Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins
2018
Báez, María E. | Espinoza, Jeannette | Fuentes, Edwar
The intensive use of insecticides such as chlorpyrifos (CPF) and diazinon (DZN) in the agricultural activities worldwide has produced contamination of soils and/or transport to non-target areas including their distribution to surface and groundwaters. Cyclodextrins (CDs) have been proposed as an alternative in remediation technologies based on the separation of contaminants from soils because they could allow a higher bioavailability for their degradation with a low environmental impact. In this work, the degradation pattern of CPF and DZN and the formation and dissipation of the major degradation products 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPH) was established in four agricultural volcanic and non-volcanic soils belonging to Andisol, Ultisol, and Mollisol orders. Both pesticides were highly adsorbed in these soils, consequently, with a greater probability of contaminating them. In contrast, the adsorption of their two main metabolites was low or null; therefore, they are potential groundwater contaminants. The degradation processes were studied in the natural and amended soils with β-cyclodextrin (β-CD) and methyl-β-cyclodextrin (Mβ-CD) for CPF and DZN, respectively. A slow degradation of CPF and DZN was obtained for volcanic soils with observable residues until the end of the incubation time (150–180 days). In Mollisols, the higher degradation rate of CPF was favored by the neutral to basic pH, and for DZN it was related to the lower adsorption and higher bioavailability. The amendment of soils with CDs produced slower degradation rates which led to a greater concentration of the compounds at the end of the incubation time. This effect was more pronounced for DZN. The exception was the Andisol, with no significant changes for both compounds regarding the unamended soil. No residues of TCP were observed for this soil in both conditions during the whole incubation time; nevertheless, the accumulation of TCP was significant in the Ultisol and Mollisols, but the concentrations were lower for the amended soils. The accumulation of IMPH was important in Mollisol amended soils; however, their residues were observed in the volcanic soils during the whole incubation period in the natural and amended soils. An important enhancement of the microbial activity occurred in the system β-CD/CPF in Mollisols, without a more effective degradation of the insecticide. The opposite effect was observed in the system Mβ-CD/DZN mainly in the oxidative activity in all soils. The higher degradation of DZN and IMPH in natural Mollisols was related to the higher hydrolytic and oxidative activities. The stability of the inclusion complexes formed could play an important role for explaining the results obtained with the amendments.
اظهر المزيد [+] اقل [-]Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis
2015
Báez, María E. | Espinoza, Jeannette | Silva, Ricardo | Fuentes, Edwar
Sorption-desorption behavior of six pesticides and some degradation products was assessed on seven agricultural volcanic and nonvolcanic soils belonging to Andisol, Ultisol, Mollisol, and Alfisol orders. The global interpretation of sorption data was performed by principal component analysis. Results showed exceptionally high sorption of glyphosate and aminomethylphosphonic acid (AMPA) (the breakdown product) on volcanic soils (K f > 1500 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹) related mainly to contents of amorphous aluminum oxides (Andisols) and crystalline minerals (Ultisols). The lower sorption on nonvolcanic soils was associated to low organic matter contents and lack of significant minerals. Metsulfuron-methyl and 3,5,6-trichloro-2-pyridinol (metabolite of chlorpyrifos) were weakly to substantially sorbed on Andisols and Ultisols, but the first one was not sorbed at pH > 6.4, including nonvolcanic soils. The metabolite of diazinon, 2-isopropyl-4-methyl-6-hydroxypyrimidine, was weakly sorbed on all soils (K f = 0.4 to 3.6 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹). Acidic compounds would be lixiviated in Mollisols and Alfisols, but they could leach also in Andisols and Ultisols if they reach greater depths. Atrazine and deethylatrazine sorption was related to organic carbon content; therefore, they were weakly retained on nonvolcanic soils (K f = 0.7 to 2.2 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹). Chlorpyrifos was highly sorbed on all soils reaching K OC values of >8000. Finally, the significant retention of chlorothalonil and diazinon on Mollisols and Alfisols in spite of their low OC contents showed the contribution of clay minerals in the sorption process.
اظهر المزيد [+] اقل [-]The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays
2018
Woignier, Thierry | Clostre, Florence | Fernandes, Paula | Soler, Alain | Rangon, Luc | Sastre-Conde, Maria Isabel | Lesueur Jannoyer, Magalie
Some volcanic soils like andosols contain short-range order nanoclays (allophane) which build aggregates with a tortuous and fractal microstructure. The aim of the work was to study the influence of the microstructure and mesoporosity of the allophane aggregates on the pesticide chlordecone retention in soils. Our study shows that the allophane microstructure favors pollutants accumulation and sequestration in soils. We put forth the importance of the mesoporous microstructure of the allophane aggregates for pollutant trapping in andosols. We show that the soil contamination increases with the allophane content but also with the mesopore volume, the tortuosity, and the size of the fractal aggregate. Moreover, the pore structure of the allophane aggregates at nanoscale favors the pesticide retention. The fractal and tortuous aggregates of nanoparticles play the role of nanolabyrinths. It is suggested that chlordecone storage in allophanic soils could be the result of the low transport properties (permeability and diffusion) in the allophane aggregates. The poor accessibility to the pesticide trapped in the mesopore of allophane aggregates could explain the lower pollutant release in the environment.
اظهر المزيد [+] اقل [-]Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies
2014
Merlin, Chloé | Devers, Marion | Crouzet, Olivier | Heraud, Cécile | Steinberg, Christian | Mougin, Christian | Martin-Laurent, Fabrice
The insecticide chlordecone is a contaminant found in most of the banana plantations in the French West Indies. This study aims to search for fungal populations able to grow on it. An Andosol heavily contaminated with chlordecone, perfused for 1 year in a soil–charcoal system, was used to conduct enrichment cultures. A total of 103 fungal strains able to grow on chlordecone-mineral salt medium were isolated, purified, and deposited in the MIAE collection (Microorganismes d'Intérêt Agro-Environnemental, UMR Agroécologie, Institut National de la Recherche Agronomique, Dijon, France). Internal transcribed spacer sequencing revealed that all isolated strains belonged to the Ascomycota phylum and gathered in 11 genera: Metacordyceps, Cordyceps, Pochonia, Acremonium, Fusarium, Paecilomyces, Ophiocordyceps, Purpureocillium, Bionectria, Penicillium, and Aspergillus. Among predominant species, only one isolate, Fusarium oxysporum MIAE01197, was able to grow in a liquid culture medium that contained chlordecone as sole carbon source. Chlordecone increased F. oxysporum MIAE01197 growth rate, attesting for its tolerance to this organochlorine. Moreover, F. oxysporum MIAE01197 exhibited a higher EC₅₀value than the reference strain F. oxysporum MIAE00047. This further suggests its adaptation to chlordecone tolerance up to 29.2 mg l⁻¹. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that 40 % of chlordecone was dissipated in F. oxysporum MIAE01197 suspension culture. No chlordecone metabolite was detected by GC-MS. However, weak amount of¹⁴CO₂evolved from¹⁴C₁₀-chlordecone and¹⁴C₁₀-metabolites were observed. Sorption of¹⁴C₁₀-chlordecone onto fungal biomass followed a linear relationship (r² = 0.99) suggesting that it may also account for chlordecone dissipation in F. oxysporum MIAE01197 culture.
اظهر المزيد [+] اقل [-]