خيارات البحث
النتائج 1 - 10 من 2,827
Removal of Benzyl butyl phthalate by Polyetheretherketone/polyvinylalcohol nanocomposite Modified with Zinc oxide nanoparticles Adsorbent from Wastewater
2024
Cheraghi, Reza | Abrishamkar, Maryam | Jalali Jahromi, Hossein | Hoseini, Farzaneh
The applicability of Polyetheretherketone/polyvinylalcohol nanocomposite modified with zinc oxide nanoparticles synthesis for the removal of benzyl butyl phthalate from wastewater. Identical techniques, including BET, FT-IR, XRD, and SEM, have to characterize this unknown material. The investigation shows the applicability of adsorbent PEEK/PVA/ZnONPs, as an available, suitable, and low-cost adsorbent for adequately removing the benzyl butyl phthalate from wastewater. The impacts of variables, including benzyl butyl phthalate concentration, adsorbent, pH, and time (15 mgL-1, 0.3 g, 5.0, and 60 min). Based on the received data, the adsorption of benzyl butyl phthalate on the PEEK/PVA/ZnONPs adsorbent agrees well with the Langmuir adsorption model isotherm (qm = 34.24 mgg-1). The results of the thermodynamic parameter showed a negative enthalpy (-77.0 KJ/mol), a negative Gibbs free energy (-11.7 KJ/mol), and negative entropy (-274.0 J/K.mol). This led to the conclusion that the adsorption process is energetically possible, and exothermic was also spontaneous. This work indicates that the PEEK/PVA/ZnONPs, used as an ecologically adapted, adsorbent holds promise for eliminating benzyl butyl phthalate from wastewater.
اظهر المزيد [+] اقل [-]Evaluating Domestic Wastewater Treatment Efficiency of Field Scale Hybrid Flow Constructed Wetland in Series
2024
Vishwakarma, Smily | Dharmendra, Dharmendra
Constructed wetlands (CWs) are man-made systems designed to treat a range of residential, commercial, and industrial wastewaters. The objective of the study was to evaluate the efficiency of wastewater treatment systems using constructed wetlands. The effectiveness of removing chemical and physical pollutants was also evaluated. The setup consisted of a hybrid flow system composed of upflow constructed wetland and a horizontal flow constructed wetland connected in series that is used for primary treatment of the influent of domestic wastewater. Two systems were analyzed: one cultivated with the ornamental species Canna Indica, and one cultivated with the cattail Cymbopogon flexuosus. It consisted of two treatment sections consisting of two plant species Cymbopogon citratus (lemon grass – first CW) and Canna xalapensis Horan (Canna Indica – second CW). The water quality parameters i.e., BOD, COD, TSS were analyzed according to APHA (American Public Health Association) by daily sampling. The CW was monitored for the quality of wastewater inflows and outflows and nutrient accumulation in plants. Results showed that the maximum COD removal for Lemon Grass and Canna Indica beds were 75% and 70% respectively at 200mg/L COD loading in the CW setup over a six-month period respectively. The maximum BOD removal found in Lemon Grass and Canna Indica beds were 73% and 64% respectively at a feed concentration of 200mg/L COD. Both the CWs together as one unit showed similar rates of TSS removal irrespective of the type of wetland plant species and were more efficient in treating wastewater.
اظهر المزيد [+] اقل [-]Organic Pollutants Removal from Olive Mill Wastewater using a new Ecosystem Treatment
2023
Bougassa, Rim | Tahri, Latifa | Nassri, Ilham | Fekhaoui, Mohammed
Olive mill wastewater is the main by-product derived from olive mills using the three-phase extraction process,displaying a serious environmental risk due to its notable content in organics and phenolics Olive oil production, an agro-industrial of vital economic particularly in Mediterranean countries, is unfortunately associated with the generation of large quantities of OMW (Olive Mill Wastewater) and solid wastes. The OMW is considered a major environmental problem, it is a powerful pollutant rejected in nature without any prior treatment. This research work aims to study the treatment of OMW by a new ecological and economic system, which consists of the use of the following components: gravel, sawdust, soil, activated carbon, bamboo, and the valorization of the solid residues. HPLC analysis showed that hydroxytyrosol is the most abundant biophenol. Many other biophenols were identified (Tyrosol, gallic acid, and eleonic acid). The comparison between before and after filtration by the new system showed an essential degradation of phenolic compounds after treatment and found a new compound resulting from their degradation.
اظهر المزيد [+] اقل [-]Characterization and Application of Biochar from spent fermentation sludge of coir wastes in removing Malachite green from effluent water
2022
Sudhakaran, Ajith | Rajan, Revathy | Ravindranath, Anita
Lignin rich solid residues after saccharification during the production of ethanol from lignocellulosic substrates are major concern during past times. These solid residues left after the saccharification of Coir pith and Bit fiber waste are pyrolysed at 350 oC to yield biochar, which has been characterized and its potential for removal of Malachite Green, a dye present in the effluents from coir product manufacturing units are studied. FTIR and XRD spectra revealed the diverse functional groups present on the surface of biochar. SEM images showed the porous structure of the biochar. A maximum dye removal efficiency of 99.5% was achieved using Coir Pith Biochar (1 %) within 24 hours of treatment at a dye concentration of 100 mg/l. The removal efficiency was 99.4 % using Bit Fiber Biochar (0.8 %) in the same treatment period. The efficiency of removal was enhanced on adjusting the pH to 4 at which the dye removal of 99.6 % and 99.7 % was achieved using Bit fiber biochar and Coir pith biochar respectively. The residence time was significantly reduced to 2 and 4 hours respectively for bit fiber and coir pith biochar at pH 4 and hence the produced biochars are cost effective adsorbents for removal of dyeing effluents in wastewater. The adsorption fits into pseudo-second order kinetics and is well described by langmuir isotherm model. This would also facilitate the sustainable use of spent solid substrates left after lignocellulosic ethanol production in a more economical way.
اظهر المزيد [+] اقل [-]Technical Design of Constructed Wetland unity for Municipal Wastewater Treatment and Reuse for a Green Space Irrigation: Case of the new City of Ouled Djellal –Algeria
2022
Rokbane, Abdelmadjid | Debabeche, Mahmoud
This work investigates the possibility of using constructed wetland system for the management of municipal wastewaters with reuse strategies for the irrigation of landscapes in Ouled Djellal city of Biskra, Algeria. The design of this system was based on the characteristics (volume and physico-chemical properties) of wastewaters and the urban plan of the studied city. Results showed that studied effluent is easily biodegradable with COD/BOD5 of 1.84 (< 3), BOD5 (325 - 365 mg/L), COD (620-644 mg/L) and TSS (120-250mg/l). The peak of raw wastewater flow was found to be 32.4 m3 /h, which was used for the calculation of drip network for the landscape irrigation. The selected variant for the configuration of the CW system is HF-VF-HF, which occupies an area of 11.580 m2 and will reduce significantly the water pollution. The treated wastewater will be reused for the irrigation of landscapes via the dimensioned drip network. Results of this study showed that the proposed design for the system (treatment and reuse) would be effective in reducing pollution in the urban environment by ensuring possibility of the reuse of the treated water for irrigation. This gives also a great opportunity for using this strategy in small neighborhoods in other cities.
اظهر المزيد [+] اقل [-]No Seasonal Differences in the Emission of Microplastics from an Urban Wastewater Treatment Plant on the Southern Coast of the Caspian Sea
2021
Alavian Petroody, Somayye Sadat | Hashemi, Seyed Hossein | van Gestel, Cornelis A.M.
This paper is the first to report on the role of a wastewater treatment plant (WWTP) in Sari, as a source of microplastics (MPs) in the Caspian Sea. Composite 270-liter/24-hour samples were taken the treated effluent of the WWTP in winter and spring, two seasons with different levels of human activity. The effluent contained 380±52.5 and 423±44.9 MPs/m3 in winter and spring, respectively, with the total numbers of MPs/m3 not differing between the two seasons. The dominant type of MPs in the effluent was microfibers with 237±68.7 and 328±33.4 per m3 in winter and spring, respectively. In both seasons, fiber sizes of
اظهر المزيد [+] اقل [-]Landfill Leachate Treatment through Electro-Fenton Oxidation
2019
Mohajeri, S. | Hamidi, A. A. | Isa, M. H. | Zahed, M. A.
Advanced Oxidation Processes (AOPs) have been employed to degrade biorefractory organic matters. This study investigates the combination of classical Fenton reaction with electrochemical oxidation, the electro-Fenton process, for the treatment of semi aerobic landfill leachate, collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. The investigation has been carried out in batch reactors with aluminum electrodes to establish the optimal treatment conditions. The effects of applied current, pH, reaction time, electrodes separation distance, H2O2/Fe2+ molar ratio, and H2O2 and Fe2+ concentrations, significant process parameters by themselves, have also been investigated. According to the obtained results, electro-Fenton process is very efficient for the treatment of landfill leachate. Optimum oxidation efficiency has been achieved when neither H2O2 nor Fe2+ are overdosed, so that the maximum amount of OH radicals is available for the oxidation of organic compounds. The highest COD and color removals have been 92% and 93%, respectively; obtained at initial pH=3, H2O2/Fe2+ molar ratio=1, applied current= 2A, treatment duration= 30 min, and electrodes separation distance= 3 cm. The current efficiency declines from 94% to 38% when the current rises from 0.5A to 2A.
اظهر المزيد [+] اقل [-]Uptake of Some Elements with Aquatic Plants Exposed to the Effluent of Wastewater Treatment Plant
2019
Tatar, S. | Obek, E. | Arslan Topal, E. I. | Topal, M.
In this study, in the removal of macro (P, S, Na, K, Ca, Mg) and micro (Sb, Ba, Co, Cu, Fe, Pb, Mn, Hg, Mo, Se, Ag, Zn) elements in the effluent of Elazig Wastewater Treatment Plant, the efficiency of Lemna minor L. and Lemna gibba L. has been studied comparatively. For this aim, fronds of these plants have been adapted to the effluent of the treatment plant that feeds pilot scale reactors. The concentrations of elements in fronds harvested during the working period were analyzed by ICP/MS. The analytical results show that Lemna minor L. has a high accumulation potential for P, Sb, Ba, Co, Fe, Pb, Mn, Hg, Ag and Zn while Lemna gibba L. has a high accumulation potential for S, Na, Ca, Mg, Cu, Mo and Se. The results show that Lemna minor L. and Lemna gibba L. can be used as phytoremediators of wastewater.
اظهر المزيد [+] اقل [-]Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation
2018
Ali, Ahmed | Al-Mussawy, H.A. | Hussein, M.J. | Hamadi, N.J.
The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different factors like temperature, type of electrode, configuration, and surface area of electrode being studied. The optimum temperature is found to be 32Co, with the optimum type of electrode being graphite rod, while the optimum configuration and surface area of electrode is graphite plate with surface area of 183.6 cm2. Artificial Neural Network (ANN) has been employed to predict voltage production of MFC and compare it with the experimental voltage. Multiple correlation methodology has optimized the voltage production with the correlation coefficient (R2) being 0.999.
اظهر المزيد [+] اقل [-]Disinfection of biologically treated wastewater using photocatalysis process with artificial UV light and natural Solar radiation
2023
Al- Dawery, Salam K. | Reddy, Sreedhar | Al-Mashrafiya, Khaloud | Al-Fraji, Buthina | Al-Daweri, Muataz Salam
The goal of this research was to investigate the efficacy photocatalysis with natural solar radiation and artificial UV radiation for disinfecting total coliforms in biologically treated wastewater. The effect of TiO2 dosage and irradiation time on total coliform inactivation as measured by log reduction values (LRV), removal of BOD, COD, turbidity, and effluent properties as measured by pH and conductivity was investigated. Two sets of experimental equipment were constructed, one for using solar UV light and the other for using artificial UV light. After four hours of irradiation with 60 mg/L TiO2, photocatalysis achieved LRVs of 1.4 and 1, respectively, under UV and solar radiation. COD and BOD were reduced by 67% and 50% respectively under UV and solar radiation after two hours of irradiation with 60 mg/L TiO2. Turbidity was reduced by 71%. Both conductivity and acidity of the effluent were reduced as TiO2 concentration was increased. Photocatalysis with natural solar radiation produced disinfection results that were comparable to that of efficient UV light exposure. Artificial UV light and natural solar radiation can be combined in photocatalysis process to form a hybrid process.
اظهر المزيد [+] اقل [-]