خيارات البحث
النتائج 1 - 10 من 278
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
اظهر المزيد [+] اقل [-]Plutonium isotopes in the Qinghai-Tibet Plateau: Sources, distribution, and their environmental behaviors
2022
Zhao, Xue | Hou, Xiaolin | Huang, Zhao | Liu, Heng | Jiang, Huan
Due to the high radiotoxicity in high concentrations, plutonium isotopes have drawn high attentions in the consideration of radiation risk, their sources, level, environmental behaviors, including deposition, retention and migration behaviors. However, such research in the Qinghai-Tibet Plateau is still missing, where is deemed as an environmental sensitive area. ²³⁹,²⁴⁰Pu in surface soil collected from the Qinghai-Tibet Plateau were determined for the first time in this work. The concentrations of ²³⁹,²⁴⁰Pu are in the range of 0.0176–1.95 Bq/kg, falling into the reported ranges in the background areas from the similar latitude belt. The ²⁴⁰Pu/²³⁹Pu atomic ratio range was measured to be 0.146–0.225, which is similar with the global fallout values. Both indicate that the global fallout is the major source of plutonium in this region, and the low plutonium level will not cause any radiation risk so far. Based on the statistical analysis of the possible parameters (organic content, moisture content, average annual precipitation, altitudes, topography and human activity), the large variations of ²³⁹,²⁴⁰Pu concentrations were mainly attributed to the retention process related factors including soil organic content and human activity disturbances. While, the deposition related factors including the average annual precipitation, altitudes, topography made insignificant influence on the spatial distribution of ²³⁹,²⁴⁰Pu concentrations due to the low ²³⁹,²⁴⁰Pu concentrations in atmosphere, less wet deposition amount and insignificant re-suspended amount. The highest ²³⁹,²⁴⁰Pu concentrations of 0.805–1.95 Bq/kg were mainly due to the good retention condition in the sampling sites with higher soil organic content and less human activity disturbances.
اظهر المزيد [+] اقل [-]Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
اظهر المزيد [+] اقل [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
اظهر المزيد [+] اقل [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
اظهر المزيد [+] اقل [-]Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition
2022
Arikan, Busra | Ozfidan-Konakci, Ceyda | Yildiztugay, Evren | Zengin, Gokhan | Alp, Fatma Nur | Elbasan, Fevzi
Arsenic (As) toxicity is a problem that needs to be solved in terms of both human health and agricultural production in the vast majority of the world. The presence of As causes biomass loss by disrupting the balance of biochemical processes in plants and preventing growth/water absorption in the roots and accumulating in the edible parts of the plant and entering the food chain. A critical method of combating As toxicity is the use of biosafe, natural, bioactive compounds such as hesperidin (HP) or chlorogenic acid (CA). To this end, in this study, the physiological and biochemical effects of HP (100 μM) and CA (50 μM) were investigated in Zea mays under arsenate stress (100 μM). Relative water content, osmotic potential, photosynthesis-related parameters were suppressed under stress. It was determined that stress decreased the activities of the antioxidant system and increased the level of saturated fatty acids and, gene expression of PHT transporters involved in the uptake and translocation of arsenate. After being exposed to stress, HP and CA improved the capacity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione S-transferase (GST) and glutathione peroxidase (GPX) and then ROS accumulation (H₂O₂) and lipid peroxidation (TBARS) were effectively removed. These phenolic compounds contributed to maintaining the cellular redox status by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. HP and CA reversed the adverse effects of excessive metal ion accumulation by re-regulated expression of the PHT1.1 and PHT1.3 genes in response to stress. Exogenously applied HP and CA effectively maintained membrane integrity by regulating saturated/unsaturated fatty acid content. However, the combined application of HP and CA did not show a synergistic protective activity against As stress and had a negative effect on the antioxidant capacity of maize leaves. As a result, HP and CA have great potentials to provide tolerance to maize under As stress by reducing oxidative injury and preserving the biochemical reactions of photosynthesis.
اظهر المزيد [+] اقل [-]Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining
2021
Zhang, Wenjing | Wu, Shengyu | Qin, Yunqi | Li, Shuo | Lei, Liancheng | Sun, Simiao | Yang, Yuesuo
The vadose zone is the first natural layer preventing groundwater pollution. Understanding virus transport and retention in the vadose zone is necessary. The effects of different interfaces and mechanisms on virus transport and retention were investigated by studying Escherichia coli phage migration in laboratory-scale columns under unsaturated conditions. The E. coli phage was used as a model virus. Colloid filtration theory, extended Derjagin–Landau–Verwey–Overbeek theory and two−site kinetic deposition model were used to calculate fitted parameters and interaction energies to assess virus retention at different interfaces. The collector diameters and the size of E. coli phages in the influent and effluent were compared to assess the effect of straining. The results indicated that the roles of solid–water interfaces (SWIs) and air–water interfaces (AWIs) in retaining E. coli phages are strongly controlled by the moisture content and hydrochemical conditions. Decreasing the moisture content and increasing the ionic strength (IS) of the suspension increased E. coli phage retention. At suspension ISs of 0.01 or 0.03 M and various moisture contents, E. coli phages were mainly retained at the SWIs rather than AWIs. When the IS was increased to 0.06 M, the viruses were strongly retained by becoming attached to both SWIs and AWIs. The role of straining in virus retention could not be ignored. Viruses were retained more at the SWIs and less straining occurred under acidic conditions than under neutral or alkaline conditions. This was mainly because of the effects of the pH and IS on surface charges and the model virus particle size. This study has important implications for modeling and predicting virus transport in soil affected by rainfall, snowmelt, and human activities (e.g., irrigation and artificial groundwater recharging).
اظهر المزيد [+] اقل [-]Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers
2021
Pan, Yuying | Zhang, Qian | Yu, Yewei | Tong, Yihan | Wu, Wenyu | Zhou, Youlin | Hou, Weifen | Yang, Jinsheng
An experimentally induced three-dimensional petroleum seepage flume was used to investigate its migration in heterogeneous soil layers and a method for monitoring resistivity was adopted, under conditions of fluctuating water levels and rainfall. The corresponding mechanisms were then analyzed based on the resistivity characteristics and combined with three-dimensional inversion images. Finally, physical and chemical property analysis was conducted to verify the results of resistivity monitoring. The results demonstrated that: (1) In the process of natural oil leakage, the variation of soil resistivity presents a concave shape in the resistivity profile. Thus, oil migration exhibited the following patterns. At first, circular migration front was dominant in a vertical direction. Subsequently, after vertical migration was impeded, lateral migration was dominant. As the crude oil gradually accumulated, the migration front broke through the limitation of lithologic interface and continued vertically. (2) By comparing the two resistivity monitoring methods, namely the Wenner and Pole-pole methods, it was demonstrated that the inversion resistivity measured by Wenner method was closer to the true resistivity, and the resistivity variations were more distinguishable. (3) The resistivity inversion profile demonstrated that the low resistivity anomaly of the crude oil leakage area was related to the low water content of the soil layer in the test area. (4) Fluctuations in water level increased the diffusion range of crude oil beyond the original pollution source area, especially horizontally. (5) Percolation of rainfall caused the water level to rise, and the crude oil was evenly distributed in the soil layers above the capillary zone. (6) Through sample analysis and verification, it was demonstrated that the resistivity method can accurately and intuitively present the characteristics of crude oil migration. These results provide theoretical support for the rapid determination of the migration range and characteristics of crude oil in heterogeneous soil layers.
اظهر المزيد [+] اقل [-]Aerosol water content enhancement leads to changes in the major formation mechanisms of nitrate and secondary organic aerosols in winter over the North China Plain
2021
Chen, Chunrong | Zhang, Haixu | Yan, Weijia | Wu, Nana | Zhang, Qiang | He, Kebin
In recent years, severe air pollution still frequently occurs in winter despite the effective implementation of clean air actions in China. Therefore, field measurements of particle composition and gas precursors were collected from December 1, 2018 to January 15, 2019 at an urban site in a central Chinese city to investigate the existing mechanisms of pollution. The hourly averaged PM₂.₅ concentration during the campaign was 92.7 μg m⁻³, with nitrate and organic aerosol (OA) demonstrated as the principal components. Generally, NO₂ oxidation in the daytime was observed as the major mechanism for nitrate generation, and aerosol water content (AWC) showed its influential role with the associated increases in the nitrogen oxidation and nitrate partitioning ratios. When AWC increased from dozens to hundreds of μg m⁻³ after the afternoon, nocturnal N₂O₅ hydrolysis was demonstrated as the overriding mechanism and provoked extreme contamination of nitrates. Five sources of organic aerosols (OAs) were identified: hydrocarbon-like OAs (HOAs, 16.5%), coal combustion OAs (CCOAs, 19.2%), biomass burning OAs (BBOAs, 9.9%), semi-volatile oxygenated OAs (SV–OOAs, 29.4%), and low-volatile oxygenated OAs (LV-OOAs, 25.0%). SV-OOAs and LV-OOAs were identified as gasSOAs and aqSOAs according to their sensitivities to the atmospheric oxidation capacity and AWC. In addition, aqueous-phase processing was found to be the dominant pathway for SOA formation when the AWC concentration was higher than 80 μg m⁻³. As an influential factor for nitrate and SOA formation, AWC could be greatly affected by RH and the concentrations of inorganic species. Sulfate, which was mainly contributed by anthropogenic emissions, was demonstrated to be a significant factor for active aqueous phase reactions, although SO₂ has been dramatically reduced in recent years. Above all, this study revealed the significant role of AWC in current pollution episode in winter, and will assist in establishing future measures for pollution mitigation.
اظهر المزيد [+] اقل [-]Selecting the best stabilization/solidification method for the treatment of oil-contaminated soils using simple and applied best-worst multi-criteria decision-making method
2020
Kujlu, Rahele | Moslemzadeh, Mehrdad | Rahimi, Somayeh | Aghayani, Ehsan | Ghanbari, Farshid | Mahdavianpour, Mostafa
Oil-contaminated soils resulted from drilling activities can cause significant damages to the environment, especially for living organisms. Treatment and management of these soils are the necessity for environmental protection. The present study investigates the field study of seven oil-contaminated soils treated by different stabilization/solidification (S/S) methods, and the selection of the best treated site and treatment method. In this study, first, the ratios of consumed binders to the contaminated soils (w/w) and the treatment times for each unit of treated soils were evaluated. The ratios of consumed binders to the contaminated soils were between 6 and 10% and the treatment times for each unit of treated soils were between 4.1 and 18.5 min/m³. Physicochemical characteristics of treated soils were also determined. Although S/S methods didn’t change the water content of treated soils, they increased the porosity of soils. Unexpectedly, the cement-based S/S methods didn’t increase the pH of the treated soils. The highest and the lowest leaching of petroleum hydrocarbons was belonging to S/S using diatomaceous earth (DE) and the combination of Portland cement, sodium silicate and DE (CS-DE), respectively. The best acid neutralization capacity was obtained for soils treated using the combination of Portland cement and sodium silicate (CS). Based on the best-worst multi-criteria decision-making method (BWM-MCDM), the soils treated using CS-DE was select as the best. The BWM-MCDM can be used as an effective tool for the selection of the best alternative in all areas of environmental decontamination.
اظهر المزيد [+] اقل [-]