خيارات البحث
النتائج 1 - 10 من 49
Removal characteristics of a composite active medium for remediation of nitrogen-contaminated groundwater and metagenomic analysis of degrading bacteria
2019
Li, Shuo | Zhang, Yuling | Qian, Hong | Deng, Zhiqun | Wang, Xi | Yin, Siqi
To investigate the removal characteristics of ammonium-nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N), nitrate-nitrogen (NO₃⁻-N), and total nitrogen from groundwater by a degradable composite active medium, kinetics, thermodynamics, and equilibrium adsorption, experiments were performed using scoria and degrading bacteria immobilized on scoria. Removal of NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N was conducted in adsorption experiments using different times, initial concentrations, pH values, and groundwater chemical compositions (Ca²⁺, Mg²⁺, HCO₃⁻, CO₃²⁻, Fe²⁺, Mn²⁺, and SO₄²⁻). The results showed that the removal of nitrogen by the composite active medium was obviously better than that of scoria alone. The removal rates of NH₄⁺-N (C₀ = 5 mg/L), NO₂⁻-N (C₀ = 5 mg/L), and NO₃⁻-N (C₀ = 100 mg/L) by the composite active medium within 1 h were 96.05%, 82.40%, and 83.16%, respectively. The adsorption kinetics were well fitted to a pseudo-second order model, whereas the equilibrium adsorption agreed with the Freundlich model. With changes in the pH, variation in the removal could be attributed to the combined effect of hydrolysis and competitive ion adsorption, and the optimum pH was 7. Different concentration conditions, hardness, alkalinity, anions, and cations showed different promoting and inhibiting effects on the removal of nitrogen. A careful examination of ionic concentrations in adsorption batch experiments suggested that the sorption behavior of nitrogen onto the immobilized medium was mainly controlled by ion exchange. The degrading bacteria on the scoria surface were eluted and analyzed by metagenomic sequencing. There were significant differences in the number of operational taxons, relative abundances, and community diversity among degrading bacteria after adsorption of the three forms of nitrogen. The relative abundance of degrading bacteria was highest after NO₃⁻-N removal, and the diversity was highest after NO₂⁻-N removal. Pseudomonas and Serratia were the dominant genera that could efficiently remove NH₄⁺-N and NO₂⁻-N.
اظهر المزيد [+] اقل [-]Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health: A case study in Northeast China
2019
Zhai, Yuanzheng | Zheng, Fuxin | Zhao, Xiaobing | Xia, Xuelian | Teng, Yanguo
Concentrations of common pollutants in groundwater continue to increase, and emerging pollutants are also increasingly found worldwide, thereby increasingly impacting human activities. In this new situation, it is necessary, albeit more difficult, to once again recognize the hydrochemical genesis of groundwater and to subsequently screen the typical pollutants. Taking the groundwater of the Songnen Plain of Northeast China as an example, the hydrochemical genesis was identified using space interpolation, characteristic element ratio and factor analysis methods based on 368 groundwater samples. Subsequently, the typical pollutants with potential impacts on the health of the local residents were screened by the index system method newly established. All the measured hydrochemical compositions show an obvious spatial variation, with a uniform hydrochemical type of HCO3–Ca in the whole area. Both the major compositions (K, Na, Ca, Mg, HCO3, Cl and SO4) and trace compositions (Fe, Mn, Cu, Zn, Pb, As, F, I and Se) are mainly protogenetic in an environment impacted by the lixiviation of groundwater in the migration process in the strata, although these compositions have been impacted by human activities to varying degrees. The mass concentration of NO3–N has exceeded most of the major compositions except for HCO3 and Ca, which means the nitrogen pollution problem is already very serious; and this problem is mainly caused by the utilization of fertilizers and the discharge of industrial wastewater and domestic sewage. Human activities have obviously disrupted the natural dynamic balance of these chemicals between the environment and the groundwater, thereby intensifying the release of F, Fe and Mn from the environment. TDS, total hardness, tri-nitrogen, F, Fe, Mn, Pb and As in some parts are found to exceed the standards of groundwater quality to varying degrees. As, Pb, Fe, NO3–N, NO2–N, Mn, F and NH4–N are finally screened as the typical pollutants.
اظهر المزيد [+] اقل [-]Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas)
2018
Philipps, Rebecca R. | Xu, Xiaoyu | Mills, Gary L. | Bringolf, Robert B.
We conducted an exposure experiment with Diffusive Gradients in Thin- Films (DGT), fathead minnow (Pimephales promelas), and yellow lampmussel (Lampsilis cariosa) to estimate bioavailability and bioaccumulation of Cu. We hypothesized that Cu concentrations measured by DGT can be used to predict Cu accumulation in aquatic animals and alterations of water chemistry can affect DGT's predict ability. Three water chemistries (control soft water, hard water, and addition of natural organic matter (NOM)) and three Cu concentrations (0, 30, and 60 μg/L) were selected, so nine Cu-water chemistry combinations were used. NOM addition treatments resulted in decreased concentrations of DGT-measured Cu and free Cu ion predicted by Biotic Ligand Model (BLM). Both hard water and NOM addition treatments had reduced concentrations of Cu ion and Cu-dissolved organic matter complexes compared to other treatments. DGT-measured Cu concentrations were linearly correlated to fish accumulated Cu, but not to mussel accumulated Cu. Concentrations of bioavailable Cu predicted by BLM, the species complexed with biotic ligands of aquatic organisms and, was highly correlated to DGT-measured Cu. In general, DGT-measured Cu fit Cu accumulations in fish, and this passive sampling technique is acceptable at predicting Cu concentrations in fish in waters with low NOM concentrations.
اظهر المزيد [+] اقل [-]Assessing the toxicity and risk of salt-impacted winter road runoff to the early life stages of freshwater mussels in the Canadian province of Ontario
2017
Prosser, R.S. | Rochfort, Q. | McInnis, R. | Exall, K. | Gillis, P.L.
In temperate urbanized areas where road salting is used for winter road maintenance, the level of chloride in surface waters has been increasing. While a number of studies have shown that the early-life stages of freshwater mussels are particularly sensitive to salt; few studies have examined the toxicity of salt-impacted winter road runoff to the early-life stages of freshwater mussels to confirm that chloride is the driver of toxicity in this mixture. This study examines the acute toxicity of field-collected winter road runoff to the glochidia of wavy-rayed lampmussels (Lampsilis fasciola) (48 h exposure) and newly released juvenile fatmucket mussels (Lampsilis siliquoidea) (<1 week old; 96 h exposure) under different water hardness. The chronic toxicity (28 d) to older juvenile L. siliquoidea (7–12 months old) was also investigated. The 48-h EC50 and 96-h LC50 for L. fasciola glochidia and L. siliquoidea juveniles exposed to different dilutions of road run-off created with moderately hard synthetic water (∼80 mg CaCO3/L) were 1177 (95% confidence interval (CI): 1011–1344 mg Cl−/L) and 2276 mg Cl−/L (95% CI: 1698–2854 mg Cl−/L), respectively. These effect concentrations correspond with the toxicity of chloride reported in other studies, indicating that chloride is likely the driver of toxicity in salt-impacted road-runoff, with other contaminants (e.g., metals, polycyclic aromatic hydrocarbons) playing a de minimis role. Toxicity data from the current study and literature and concentrations of chloride in the surface waters of Ontario were used to conduct a probabilistic risk assessment of chloride to early-life stage freshwater mussels. The assessment indicated that chronic exposure to elevated chloride levels could pose a risk to freshwater mussels; further investigation is warranted to ensure that the most sensitive organisms are protected.
اظهر المزيد [+] اقل [-]Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters
2011
Gillis, Patricia L.
Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada’s most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel’s larval stage. The 24h EC50s of four (including two Canadian endangered) species ranged from 113–1430mgClL⁻¹ (reconstituted water, 100mg CaCO₃L⁻¹). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278–322mg CaCO₃L⁻¹) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265–1559mg Cl L⁻¹) than in reconstituted water (EC50 285mgL⁻¹). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300mgL⁻¹). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk.
اظهر المزيد [+] اقل [-]Assessment of the water quality of groundwater in Bohai Rim and the controlling factors—a case study of northern Shandong Peninsula, north China
2021
Gao, Zongjun | Han, Cong | Xu, Yuan | Zhao, Zhenhua | Luo, Zhenjiang | Liu, Jiutan
This study collected 184 groundwater (GW) samples from 92 wells during the dry and wet seasons, respectively to understand the hydrochemical characteristics, water quality, and risk of GW nitrate (NO₃⁻) to human health in northern Shandong Peninsula (NSP), China. The results showed that GW in the NSP is weakly alkaline and classified as hard fresh water. The mean concentration of NO₃⁻ in GW exceeded 100 mg·L⁻¹, total hardness exceeded 450 mg·L⁻¹, and total dissolved solids (TDS) was less than 1000 mg·L⁻¹. A Piper diagram showed that the water chemistry of GW in the NSP was mainly of the SO₄·Cl-Ca·Mg type. A Gibbs diagram and ion ratio analysis indicated that the weathering of silicate rocks and agricultural production were the dominant factors affecting the hydrochemical characteristics of GW in the NSP, with cation exchange, dissolution of salt rock, and weathering of carbonate rock also making contributions. Na⁺ and Cl⁻ in GW are significantly affected by seawater aerosols in coastal areas. During the wet season, the hydrodynamic conditions of the aquifer are improved, agricultural activities are strengthened, and GW becomes generally homogenized. The water quality index classified the GW quality of the NSP as mainly of medium quality. There was a relatively consistent spatial distribution of water quality during different periods. Water samples of poor water quality were mainly distributed in the lower reaches of the Huangshui River. In addition, total hardness and NO₃⁻ concentrations were the main variables affecting the quality of GW in the NSP. The assessment of the risk NO₃⁻ in GW in the NSP to human health through the ingestion of drinking water demonstrated a significant risk (infants > children > adults). These results indicate the need for local management measures to reduce the potential health risks of GW quality in the NSP.
اظهر المزيد [+] اقل [-]Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau
2021
Xiao, Jun | Wang, Lingqing | Chai, Ningpan | Liu, Ting | Jin, Zhangdong | Rinklebe, Jörg
Groundwater is essential for regional ecological-economic system and is an important resource of drinking water, especially in the Chinese Loess Plateau (CLP), where is a typical water-limited ecosystem. Groundwater quality deterioration will affect water security and exacerbate the water shortages. Groundwater hydrochemistry, pollution source apportionment, quality and health risks were evaluated based on analysis of major ions and selected trace elements in seasonal samples of the Fen River Basin (FRB) in the eastern CLP. Groundwaters in the FRB were mainly HCO₃⁻-Ca²⁺-Na⁺ water type with low dissolved solutes in upstream samples, high values in midstream samples and medium values in downstream samples. Solutes in upstream samples were mainly derived from carbonate weathering, while those in midstream and downstream samples came from silicate weathering, evaporites dissolution and anthropogenic sources. Self-organizing map (SOM) showed the hydrochemistry remained unchanged from dry to wet season for most sampling points. The seasonal variations of Ag, Cd, Ni, Pb, and Tl were significant due to anthropogenic input. High NO₃⁻ in upstream and downstream samples resulted primarily from sewage discharge, and high SO₄²⁻ in midstream and downstream samples was from gypsum- and coal-related industries. In addition, anthropogenic input related to coal industries significantly aggravates pollution of As, Ni, Ag, Fe, and Mn. Influenced by evaporites and anthropogenic input, midstream samples had high salinity, total hardness and water quality indices (WQIs) and were unsuitable for irrigation or drinking purposes. Seasonal variation of WQI in the FRB was unsignificant except Jiaokou River sub-basin, where groundwater quality was worse in the wet season than the dry season due to coal mining. Great attention should be paid to the high non-carcinogenic risks of exposure to F, V, Mn, and Cr via dermal absorption, particularly for children. Overall, groundwater quality in the FRB was best in upstream, medium in midstream and worst in midstream based on different index. Groundwater quality is deteriorated by anthropogenic input and the sewage discharge in the FRB should be strictly controlled. Our report provides a reference for groundwater pollution evaluation and source identification in similar areas.
اظهر المزيد [+] اقل [-]Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents
2020
Noman, Muhammad | Shāhid, Muḥammad | Ahmed, Temoor | Niazi, Muhammad Bilal Khan | Ḥussain, Ṣābir | Song, Fengming | Manzoor, Irfan
Textile wastewater contains a huge amount of azo dyes and heavy metals and catastrophically deteriorates the agricultural field by affecting its phyisco-chemical/biological and nutritional properties when directly drained to agricultural lands without any treatment. Recently, biogenic copper nanoparticles (CuNPs) have gained considerable attention for photocatalytic degradation of wastewater pollutants owing to their unique physico-chemical and biological properties, low cost and environmental sustainability. The current study reports the synthesis of CuNPs by a native copper-resistant bacterial strain Escherichia sp. SINT7 and evaluation of the photocatalytic activity of the biogenic CuNPs for azo dye degradation and treatment of textile effluents. Scanning electron microscopy and transmission electron microscopy revealed the spherical shape of biogenic CuNPs with particle size ranging from 22.33 to 39 nm. Moreover, X-ray diffraction data revealed that the CuNPs have spherical crystalline shapes with an average particle size of 28.55 nm. FTIR spectra showed the presence of coating proteins involved in the stabilization of nanomaterial. Azo dye degradation assays indicated that CuNPs decolorized congo red (97.07%), malachite green (90.55%), direct blue-1 (88.42%) and reactive black-5 (83.61%) at a dye concentration of 25 mg L⁻¹ after 5 h of sunlight exposure. However, at 100 mg L⁻¹ dye concentration, the degradation percentage was found to be 83.90%, 31.08%, 62.32% and 76.84% for congo red, malachite green, direct blue-1 and reactive black-5, respectively. Treatment of textile effluents with CuNPs resulted in a significant reduction in pH, electrical conductivity, turbidity, total suspended solids, total dissolved solids, hardness, chlorides and sulfates as compared to the non-treated samples. Thus, the promising dye detoxification and textile effluent recycling efficiency of biogenic CuNPs may lead to the development of eco-friendly and cost-efficient process for large-scale wastewater treatment.
اظهر المزيد [+] اقل [-]Groundwater pollution early warning based on QTR model for regional risk management: A case study in Luoyang city, China
2020
Huan, Huan | Li, Xiang | Zhou, Jun | Liu, Weijiang | Li, Juan | Liu, Bing | Xi, Beidou | Jiang, Yonghai
Groundwater pollution early warning has been regarded as an effective tool for regional groundwater pollution prevention, especially in China. In this study, the systemic model was established to assess the groundwater pollution early warning by integrating the present situation of groundwater quality (Q), groundwater quality trend (T) and groundwater pollution risk (R). The model integrated spatial and temporal variation of groundwater quality, and combined the state and process of the groundwater pollution. Q, T and R were assessed by the methods of fuzzy comprehensive assessment, Spearman or nonparametric Mann-Kendall trend test, and overlay index, respectively. Taking the Luoyang City as an example, the groundwater pollution early warning mapping was generated, and verified by corresponding the groundwater quality classes and the early warning degrees. The results showed that the groundwater was dominated by the levels of no warning and light warning, which accounted for 77% of the study area. The serious and tremendous warning areas were affected by the worse trend and relatively bad/bad present situations of groundwater quality with the typical contaminants of total hardness, nitrate, Hg and COD. In summary, the present situation of groundwater quality was the most important factor of groundwater pollution early warning mapping in the study area. The worse trend of groundwater quality played equally a key role in the local regions, as well as the high pollution risk, which was mainly affected by the pollution source loading. Targeted measures for groundwater pollution prevention were proposed in the corresponding degrees of groundwater pollution early warning. The QTR model was proved to be effective for assessing the regional groundwater pollution early warning. The accuracy of the model could be improved if there is further data acquisition of groundwater quality in longer time series and in larger number, and further investigation of pollution sources.The QTR model is proposed and proved to be effective for assessing regional groundwater pollution early warning.
اظهر المزيد [+] اقل [-]Integrative study of microbial community dynamics and water quality along The Apatlaco River
2019
Breton-Deval, Luz | Sánchez Flores, Alejandro | Juárez, Katy | Vera-Estrella, Rosario
The increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance. Parameters such as total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzed in 17 sampling points along the river. The high pollution level was registered in the sampling point 10 with 480 mg/L chemical oxygen demand, 7 mg/L nitrite, 34 mg/L nitrate, 2 mg/L dissolved oxygen, and 299 mg/L of total dissolved solids. From these sites, we selected four samples for DNA extraction and performed a metagenomic analysis using a whole metagenome shotgun approach, to compare the microbial communities between polluted and non-polluted sites. In general, Proteobacteria was the most representative phylum in all sites. However, the clean water reference point was enriched with microorganism from the Limnohabitans genus, a planktonic bacterium widespread in freshwater ecosystems. Nevertheless, in the polluted sampled sites, we found a high abundance of potential opportunistic pathogen genera such as Acinetobacter, Arcobacter, and Myroides, among others. This suggests that in addition to water contamination, an imminent human health risk due to pathogenic bacteria can potentially affect a population of ∼1.6 million people dwelling nearby. These results will contribute to the knowledge regarding anthropogenic pollution on the microbial population dynamic and how they affect human health and life quality.
اظهر المزيد [+] اقل [-]