خيارات البحث
النتائج 1 - 10 من 76
Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit النص الكامل
2019
Dusart, Nicolas | Vaultier, Marie-Noëlle | Olry, Jean-Charles | Buré, Cyril | Gérard, Joëlle | Jolivet, Yves | Le Thiec, Didier | SILVA (SILVA) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL) | ANR-12-LABXARBRE-01
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
اظهر المزيد [+] اقل [-]Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit النص الكامل
2019
Dusart, Nicolas | Vaultier, Marie-Noëlle | Olry, Jean-Charles | Buré, Cyril | Gérard, Joëlle | Jolivet, Yves | Le Thiec, Didier | SILVA (SILVA) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL) | ANR-12-LABXARBRE-01
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
اظهر المزيد [+] اقل [-]A Retrospective Isotopic Study of Spruce Decline in the Vosges Mountains (France) النص الكامل
2003
Poszwa, Anne | Wickman, Tonie | Dambrine, Etienne | Ferry, Bruno | Dupouey, Jean-Luc | Helle, Gerdhard | Schleser, Gerdhard | Bréda, Nathalie | Institut National de la Recherche Agronomique (INRA) | KTH Royal Institute of Technology [Stockholm] (KTH) | Laboratoire d'Etudes des Ressources Forêt-Bois (LERFoB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Institut für Chemie und Dynamik der Geosphäre - Troposphäre (ICG-2) ; Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre (FZJ) ; Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
International audience | The objective of this study was to assess the time variation of mineral and water stress levels across the life of a declining, Mg-deficient, spruce stand, in order to clarify the factors that caused the decline. Since 1985, strong soil acidification linked to a large leaching of nitrate and base cations was measured at the study site. In 1994, 5 trees were felled and tree rings were measured and analysed for Ca, Mg, K, Sr, 13 C/ 12 C and 87 Sr/ 86 Sr isotopic ratios. Strontium pools and fluxes as well as root Sr isotope ratio in relation to depth were also measured. Wood chemical concentrations and isotope ratios were strongly related to the dominance status of each tree. On average during the study period, the 87 Sr/ 86 Sr ratio of spruce wood decreased. Using a mechanistic model computing long term variations of 87 Sr/ 86 Sr ratio in trees and soils, we reproduced the observed trend by simulating soil acidification-increasing Sr drainage from the whole profile, and particularly from the organic horizon-, and root uptake becoming more superficial with time. Between 1952 and 1976, tree ring 13 C decreased strongly and continuously, which, in addition to other factors, might be related to an increase in water stress. Thus, a decrease in rooting depth, possibly related to soil acidification, appeared as a possible cause for the long term increase in water stress. The extreme drought event of 1976 appears to have revealed and triggered the decline.
اظهر المزيد [+] اقل [-]Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient النص الكامل
2020
Wang, Zhenhua | Wang, Chengzhang | Wang, Bin | Wang, Xin | Li, Jing | Wu, Jin | Liu, Lingli
Atmospheric pollution could significantly alter tree growth independently and synergistically with meteorological conditions. North China offers a natural experiment for studying how plant growth responds to air pollution under different meteorological conditions, where rapid economic growth has led to severe air pollution and climate changes increase drought stress. Using a single aspen clone (Populus euramericana Neva.) as a ‘phytometer’, we conducted three experiments to monitor aspen leaf photosynthesis and stem growth during in situ exposure to atmospheric pollutants along the urban-rural gradient around Beijing. We used stepwise model selection to select the best multiple linear model, and we used binned regression to estimate the effects of air pollutants, atmospheric moisture stress and their interactions on aspen leaf photosynthesis and growth. Our results indicated that ozone (O₃) and vapor pressure deficit (VPD) inhibited leaf photosynthesis and stem growth. The interactive effect of O₃ and VPD resulted in a synergistic response: as the concentration of O₃ increased, the negative impact of VPD on leaf photosynthesis and stem growth became more severe. We also found that nitrogen (N) deposition had a positive effect on stem growth, which may have been caused by an increase in canopy N uptake, although this hypothesis needs to be confirmed by further studies. The positive impact of aerosol loading may be due to diffuse radiation fertilization effects. Given the decline in aerosols and N deposition amidst increases in O₃ concentration and drought risk, the negative effects of atmospheric pollution on tree growth may be aggravated in North China. In addition, the interaction between O₃ and VPD may lead to a further reduction in ecosystem productivity.
اظهر المزيد [+] اقل [-]Occurrence and indicators of pharmaceuticals in Chinese streams: A nationwide study النص الكامل
2018
Yao, Bo | Yan, Shuwen | Lian, Lushi | Yang, Xin | Wan, Chunli | Dong, Hengtao | Song, Weihua
Pharmaceutically active compounds (PhACs) are excreted by humans and animals and released into the aquatic environment through wastewater, which can have potential negative impacts on ecological systems. To conduct a nationwide investigation of the occurrence of PhACs in water resources in China, an analytical procedure based on solid-phase extraction (SPE) and LC-MS/MS was used to measure 45 PhACs in surface water samples from a network of 29 rivers across 31 provinces in China in 2014 and 2015. PhACs were prevalent in all sampled streams. The concentrations of commonly detected PhACs were comparable to those detected in other countries. High total concentrations (mean > 1 μg L−1) of all tested PhACs were primarily detected in areas under extreme water stress, specifically northern and eastern coastal areas. Source apportionment based on the profiles of the target compounds found that 54% of the PhACs in China originated from freshly discharged untreated sewage. Metformin (MET) and its biodegradation product, guanylurea (GUL), were used as a pair of indicators to predict PhAC contamination levels and differentiate between biotreated and unbiotreated wastewater. High MET/GUL can be used to indicate untreated wastewater, whereas low MET/GUL values are a strong indicator of treated wastewater. Furthermore, wastewater biotreatment ratios were calculated. We estimated that the biotreatment ratios of most of the provinces in China were less than 50%. We conclude that more attention should be paid to untreated sewage water, especially water in rural areas rather than the existing concentration on urban sewage treatment-oriented management.
اظهر المزيد [+] اقل [-]Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation النص الكامل
2016
Zhang, Yuping | Sallach, J Brett | Hodges, Laurie | Snow, Daniel D. | Bartelt-Hunt, Shannon L. | Eskridge, Kent M. | Li, Xu
Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation.
اظهر المزيد [+] اقل [-]Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China النص الكامل
2015
Li, Li | Manning, William J. | Tong, Lei | Wang, Xiaoke
A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 – induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3.
اظهر المزيد [+] اقل [-]Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy النص الكامل
2009
Gerosa, G. | Marzuoli, R. | Desotgiu, R. | Bussotti, F. | Ballarin-Denti, A.
This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O3 m-²). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification. The stomatal uptake of ozone is an important factor to evaluate visible injury appearance and evolution in plants.
اظهر المزيد [+] اقل [-]Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses النص الكامل
2022
Silambarasan, Sivagnanam | Logeswari, Peter | Vangnai, Alisa S. | Kamaraj, Balu | Cornejo, Pablo
In this study, two proficient Cadmium (Cd) resistant and plant growth-promoting actinobacterial strains were isolated from metal-polluted soils and identified as Streptomyces sp. strain RA04 and Nocardiopsis sp. strain RA07. Multiple abiotic stress tolerances were found in these two actinobacterial strains, including Cd stress (CdS), drought stress (DS) and high-temperature stress (HTS). Both actinobacterial strains exhibited multifarious plant growth-promoting (PGP) traits such as phosphate solubilization, and production of indole-3-acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase under CdS, DS and HTS conditions. The inoculation of strains RA04 and RA07 significantly increased Sorghum bicolor growth and photosynthetic pigments under CdS, DS, HTS, CdS + DS and CdS + HTS conditions as compared to their respective uninoculated plants. The actinobacterial inoculants reduced malondialdehyde concentration and enhanced antioxidant enzymes in plants cultivated under various abiotic stress conditions, indicating that actinobacterial inoculants reduced oxidative damage. Furthermore, strains RA04 and RA07 enhanced the accumulation of Cd in plant tissues and the translocation of Cd from root to shoot under CdS, CdS + DS and CdS + HTS treatments as compared to their respective uninoculated plants. These findings suggest that RA04 and RA07 strains could be effective bio-inoculants to accelerate phytoremediation of Cd polluted soil even in DS and HTS conditions.
اظهر المزيد [+] اقل [-]Multiple stable isotopes and geochemical approaches to elucidate groundwater salinity and contamination in the critical coastal zone: A case from the Bou-areg and Gareb aquifers (North-Eastern Morocco) النص الكامل
2022
Elmeknassi, Malak | Bouchaou, Lhoussaine | El Mandour, Abdennabi | Elgettafi, Mohammed | Himi, Mahjoub | Casas, Albert
Mediterranean areas are characterized by complex hydrogeological systems, where water resources are faced with several issues such as salinity and pollution. Fifty-one water samples were gathered from the Bou-areg coastal and the Gareb aquifers to evaluate the source of water salinity and to reveal the processes of the different sources of pollution using a variety of chemical and isotopic indicators (δ²H–H2O, δ¹⁸O–H2O, δ³⁴S–SO4, and δ¹⁸O–SO4). The results of the hydrochemical analysis of water samples show that the order of dominated elements is Cl⁻ > HCO₃⁻ > SO4₂⁻ > NO₃⁻ and Na⁺ > Ca²⁺ > Mg²⁺ > K⁺ and evidenced extremely high salinity levels (EC up to 22000 μS/cm). All samples exceeded the WHO drinking water guidelines, making them unfit for human consumption. Ion ratio diagrams, isotopic results, and graphical comparing indicate that the mineralization of groundwater in the area, is controlled by carbonate dissolution, evaporite dissolution, ion exchange, and sewage invasion. The return of irrigation water plays a significant role as well in the groundwater recharge and its mineralization by fertilizers mainly. Evaporites (Gypsum), sewage, and fertilizers constitute the main sources of sulfates in the investigated water resources. These scientific results will be an added value for decision-makers to more improve the sustainable management of groundwater in water-stressed regions. The use of chemical and isotopic tracers once again shows their relevance in such zones where systematic monitoring is lacking.
اظهر المزيد [+] اقل [-]