خيارات البحث
النتائج 1 - 10 من 115
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation النص الكامل
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
اظهر المزيد [+] اقل [-]Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands النص الكامل
2022
Lin, Fei | Zuo, Hongchao | Ma, Xiaohong | Ma, Lei
European natural peatlands have undergone long-term anthropogenic drainage activities that have severely decreased their functions, such as carbon sequestration. Recent rewetting has been conducted to restore the ecosystem services of peatlands and mitigate the emissions of potent greenhouse gases such as nitrous oxide (N₂O). However, the magnitudes and spatial patterns of annual N₂O fluxes and their mitigation potentials across European peatlands remain unknown. Here, we synthesized 492 annual N₂O flux data points from 77 in situ studies across European peatlands and found that the soil annual N₂O fluxes varied extensively from −1.08 to 33.40 kg N₂O–N ha⁻¹ yr⁻¹; these results were significantly and interactively (P < 0.05) affected by the peatland status, climatic regime and nutrient supply type. Drainage significantly (P < 0.05) stimulated soil N₂O emissions from natural minerotrophic rather than ombrotrophic peatlands, regardless of the climatic regime. Similarly, rewetting significantly (P < 0.05) reduced soil N₂O emissions from drained minerotrophic rather than ombrotrophic peatlands, demonstrating that the high N₂O emissions were driven by a simultaneous decline in the water table depth and increase in the soil nitrogen (N) availability. Magnitudes of the increases or decreases in N₂O emissions due to drainage or rewetting were also significantly influenced by the land-use and drainage history before rewetting and in the years following drainage/rewetting, respectively. The estimated annual mean N₂O emission total was found to be 90.42 (95% confidence interval: 64.49–122.57) Gg N₂O–N in 2020 from European peatlands. Scenario analysis showed that drained peatlands should be rewetted expeditiously; postponing rewetting would cause larger emissions from continued N₂O emissions from drained peatlands. Fully rewetting the drained peatlands used for forestry and peat extraction and partially rewetting those used for agriculture and grassland comprise a strategy for mitigating drained peatland N₂O emissions without compromising food security.
اظهر المزيد [+] اقل [-]Contamination of water resources of a small island state by fireworks-derived perchlorate: A case study from Malta النص الكامل
2019
Pace, Colette | Vella, Alfred J.
We have previously reported on the ubiquitous presence of perchlorate in the deposited and airborne fine dusts of Malta and shown that the source of the chemical in the dusts of this small central Mediterranean island is fireworks. There are no local geologic or anthropogenic sources of perchlorate other than firework manufacture and display. The hypothesis was tested that ground-deposited perchlorate will be mobilized in runoff and would partly migrate to the water table and eventually also affect tap water, one third of which being derived from groundwater. Forty four percent of 36 groundwater samples contained perchlorate above detection limit with mean and median values of 1.09 and 1.1 μg L−1. Sixty-two percent of 16 runoff samples collected during storms contained perchlorate above detection limit with mean and maximum concentrations, respectively, of 50.8 and 129 μg L−1, values which are far too high to be explained by atmospheric inputs given that rainwater perchlorate levels are typically <3 μg L−1. Between 42 and 89% of the tap waters analyzed in three sampling campaigns contained perchlorate above detection limit and had mean concentrations ranging from 0.4 to 1.6 μg L−1 suggesting contamination levels similar to those reported from China but lower than levels reported from the USA. The phenomenon of contamination of the water resources of Malta by perchlorate is probably unique in that it results not from geologic or industrial inputs but from an intense and prolonged pyrotechnic activity that is deeply rooted in the popular culture of the islanders.
اظهر المزيد [+] اقل [-]Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium) النص الكامل
2017
Hakoun, Vivien | Orban, Philippe | Dassargues, Alain | Brouyère, Serge
Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996–2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6–dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L−1) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide compound concentrations in chalk aquifers. The developed methodology is not restricted to chalk aquifers, it could be transposed to study other pollutants with concentrations below detection limits.
اظهر المزيد [+] اقل [-]Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco) النص الكامل
2017
Moyé, Julien | Picard-Lesteven, Tanguy | Zouhri, Lahcen | El Amari, Khalid | Hibti, Mohamed | Benkaddour, Abdelfattah
Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities.
اظهر المزيد [+] اقل [-]Ammonium release from a blanket peatland into headwater stream systems النص الكامل
2012
Daniels, S.M. | Evans, M.G. | Agnew, C.T. | Allott, T.E.H.
Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation.
اظهر المزيد [+] اقل [-]Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe النص الكامل
2011
Jiroušek, Martin | Hájek, Michal | Bragazza, Luca
We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m⁻² year⁻¹ in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient.
اظهر المزيد [+] اقل [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta النص الكامل
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
اظهر المزيد [+] اقل [-]The influence of wetting-drying alternation on methylmercury degradation in Guangzhou soil النص الكامل
2020
Xie, Mengying | Zhang, Caixiang | Liao, Xiaoping | Huang, Changsheng
In one of our previous studies, the mechanisms of radical-initiated methylmercury (MeHg) degradation in soil with coexisting Fe and Cu have been reported. In this work, various environmental factors, including water table fluctuation, pH and major ions, are discussed to clarify the behavior of MeHg in subsurface environments. Soil column experiments were set up to simulate the degradation of MeHg in the soil with an iron-bearing mineral (annite), which has often undergone repeating wetting-drying cycles, resulting from the local climate. The results indicate that wetting-drying alternation can initiate MeHg degradation in the soil with the annite mineral. Additionally, the majority of the major ions (K⁺, Na⁺, Mg²⁺, Fe³⁺, Cl⁻, SO₄²⁻, NO₃⁻) in the interstitial soil had little effect in the degradation of MeHg with the exception of Cu, which improved the degradation depending on the pH. At acidic pHs Cu increased the production of hydroxyl radical while at more alkaline pHs there was oxidation to Cu(III). The products including Hg(II) and Hg(0) of MeHg degradation were also identified in this work. This study reveals that the geochemical cycle of MeHg is closely linked to local climate and pedosphere processes.
اظهر المزيد [+] اقل [-]Transfer and degradation of the common pesticide atrazine through the unsaturated zone of the Chalk aquifer (Northern France) النص الكامل
2019
Chen, Ningxin | Valdes, Danièle | Marlin, Christelle | Ribstein, Pierre | Alliot, Fabrice | Aubry, Emmanuel | Blanchoud, Hélène
Groundwater in the Chalk aquifer is an important water resource whose quality has degraded due to fertilizer and pesticide use. Atrazine, classified as a priority substance, has been one of the most applied pesticides and also one of the most frequently detected pesticides in groundwater. The present study investigated the transfer and degradation of atrazine in the unsaturated zone of the Chalk aquifer in Northern France. The study was conducted in an underground quarry (Saint-Martin-le-Noeud), which provides a direct access to the water table and intercepts the unsaturated zone at different depths. The lake and the ceiling percolation of 16 sites throughout the quarry were followed. For 16 sites, the percolating flow rate and lake level were measured and the lake water was sampled for nitrate, atrazine and deethylatrazine (DEA, main degradation product of atrazine) analysis over 2.5 years. High spatial variations in hydrodynamics (percolating flow rate and lake level) and in lake water quality (atrazine between 55±11 and 202±40 ng L−1 and DEA between 269±53 and 1727±345 ng L−1) indicate that the properties of the unsaturated zone influence the transfer and the degradation of atrazine. A counterclockwise hysteresis characterizes the relationship between the lake level and atrazine concentration. Temporal variation shows that the atrazine is transferred through the matrix and fractures with a delay caused by the sorption process that differs in atrazine and DEA. The layer of clay-with-flints is shown to favor the degradation of atrazine near the surface. Preferential pathways may be created below clay-with-flints, through which the transfer of atrazine is quicker.
اظهر المزيد [+] اقل [-]