خيارات البحث
النتائج 1 - 10 من 22
Effect of Heavy Metals on the Growth of Total Phytoplankton Load
2019
Khatun, M. | Alam, A. K. M. R.
The experiment was performed to evaluate effect of heavy metals on total phytoplankton load (TPL) using water of Turag River adjacent to Ashulia locating on the north-eastern side of Dhaka city, Bangladesh. Total phytoplankton load comprises of Euglena sp., Borodinella sp., Pediastrum biradiatum, Pinnularia sp., Fragillaria sp., Fragillaria crotonensis, Gloeocapsa sp., Navicula sp., Cynedra sp., Crucigenia sp., Chlorella sp., Spirogyra sp., Phacus acuminatus, Phacus circulatus., Nitzschia sp. and Nitzschia clausii. Phytoplankton load showed the abundances Bascillariophyceae (43.75%) > Chlorophyceae (37.50%) > Euglenophyceae (18.75%). The average maximum growth rate (log transformed) of TPL in control culture was -0.25μg/l and treated cultures using 1ppm, 3ppm, 5ppm, 7ppm concentration of heavy metals (Zn and Cu) were 0.03 μg/l, 0.03 μg/l, -0.11 μg/l and -0.26 μg/l, respectively. In treated culture using 1ppm concentration of heavy metals (Zn and Cu) the growth rate of phytoplankton load increased significantly whereas the growth rate decreased at higher concentrations (3ppm, 5ppm and 7ppm) of heavy metals. The implication of this finding can be used to monitor health of riverine ecosystems and management of river pollution.
اظهر المزيد [+] اقل [-]Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
اظهر المزيد [+] اقل [-]Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
اظهر المزيد [+] اقل [-]Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity
2022
Yuan, Liuliang | Wang, Wen-Xiong
Zn and Cu are two of the essential trace elements and it is important to understand the regulation of their distribution on cellular functions. Herein, we for the first time investigated the subcellular fate and behavior of Zn and Cu in zebrafish cells through bioimaging, and demonstrated the completely different behaviors of Zn and Cu. The distribution of Zn²⁺ was concentration-dependent, and Zn²⁺ at low concentration was predominantly located in the lysosomes (76.5%). A further increase of cellular Zn²⁺ resulted in a spillover and more diffusive distribution, with partitioning to mitochondria and other regions. In contrast, the subcellular distribution of Cu⁺ was time-dependent. Upon entering the cells, Cu²⁺ was reduced to Cu⁺, which was first concentrated in the mitochondria (71.4%) followed by transportation to lysosomes (58.6%), and finally removal from the cell. With such differential transportation, Cu²⁺ instead of Zn²⁺ had a negative effect on the mitochondrial membrane potential and glutathione. Correspondingly, the pH of lysosomes was more sensitive to Zn²⁺ exposure and decreased with increasing internalized Zn²⁺, whereas it increased upon Cu²⁺ exposure. The responses of cellular pH showed an opposite pattern from the lysosomal pH. Lysosome was the most critical organelle in response to incoming Zn²⁺ by increasing its number and size, whereas Cu²⁺ reduced the lysosome size. Our study showed that Zn²⁺ and Cu²⁺ had completely different cellular handlings and fates with important implications for understanding of their toxicity.
اظهر المزيد [+] اقل [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
اظهر المزيد [+] اقل [-]Association of maternal serum cadmium level during pregnancy with risk of preterm birth in a Chinese population
2016
Wang, Hua | Liu, Lu | Hu, Yong-Fang | Hao, Jia-Hu | Chen, Yuan-Hua | Su, Pu-Yu | Yu, Zhen | Fu, Lin | Tao, Fang-Biao | Xu, De-Xiang
Cadmium (Cd) was a developmental toxicant that induces fetal malformation and growth restriction in mice. However, epidemiological studies about the association of maternal serum Cd level with risk of preterm birth were limited. This study was to investigate whether maternal serum Cd level during pregnancy is associated with risk of preterm birth in a Chinese population. Total 3254 eligible mother-and-singleton-offspring pairs were recruited. Maternal serum Cd level was measured by GFAAS. Based on tertiles, maternal serum Cd concentration was classified as low (LCd, <0.65 μg/L), medium (MCd, 0.65–0.94 μg/L) and high (HCd, ≥0.95 μg/L). Odds ratio (OR) for preterm birth was estimated using multiple logistic regression models. Results showed the rate of preterm birth among LCd, M-Cd and HCd was 3.5%, 3.8%, and 9.4%, respectively. Subjects with HCd had a significantly higher risk for preterm birth (OR: 2.86; 95%CI: 1.95, 4.19; P < 0.001) than did those with LCd. Adjusted OR for preterm birth was 3.02 (95%CI: 2.02, 4.50; P < 0.001) among subjects with HCd compared to subjects with LCd. Taken together, the above results suggest that maternal serum Cd level during pregnancy is positively associated with risk of preterm birth.
اظهر المزيد [+] اقل [-]Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice
2020
Cai, Yimin | Wang, Meie | Chen, Baodong | Chen, Weiping | Xu, Weibiao | Xie, Hongwei | Long, Qizhang | Cai, Yaohui
Manganese (Mn) transporter OsNRAMP5 was widely reported to regulate cadmium (Cd) uptake in rice. However, the relationship between OsNRAMP5 expression level and Cd accumulation, impacts of external ion activities on OsNRAMP5 expression level and Cd accumulation are still unclear. Investigations of the relationship between OsNRAMP5 expression level and Cd accumulation in three indica rice genotypes were conducted under various external Mn²⁺ activities ranging from Mn deficiency to toxicity in EGTA-buffered nutrient solution. Results in this work indicated that OsNRAMP5 expression level in roots significantly up-regulated at Mn phytotoxicity compared to that at Mn deficiency, which may stimulate by the increasing uptake of Mn. Our work also demonstrated that root Cd concentration of all the tested rice decreased notably when external Mn²⁺ activity reached the level of toxicity. This may explain by the increasing competition between the excess Mn²⁺ and Cd²⁺ as well as the disorder of element absorption caused by root damage at Mn toxicity. Our work also revealed that the relationship between OsNRAMP5 expression level in roots and Cd accumulation in roots was insignificant for all the tested genotypes. Besides, OsNRAMP5 expression level in roots seemed more related to root Mn accumulation. The fact that function of OsNRAMP5 mainly focuses on Mn uptake, together with the fact that many transporter genes involved in Cd uptake might result in the insignificant correlation between OsNRAMP5 expression level and Cd accumulation in roots. At last, multi-level regulating and processing of the process from gene expression to protein translation might account for the inconsistent relationship between root OsNRAMP5 expression level and Cd accumulation in roots.
اظهر المزيد [+] اقل [-]Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction
2019
Xia, Bin | Zhou, Yuhan | Zhu, Qingyang | Zhao, Yingya | Wang, Ying | Ge, Wenzhen | Yang, Qing | Zhao, Yan | Wang, Pengpeng | Si, Jingyi | Luo, Ranran | Li, Jialin | Shi, Huijing | Zhang, Yunhui
Ambient fine particulate matter (PM2.5) pollution has been implicated in the development of hypertensive disorders of pregnancy. However, evidence on the effects of PM2.5-derived chemical constituents on gestational blood pressure (BP) is limited, and the potential mechanisms underlying the association remain unclear. In this study, we repeated three consecutive 72-h personal air sampling and BP measurements in 215 pregnant women for 590 visits during pregnancy. Individual PM2.5 exposure level was assessed by gravimetric method and 28 PM2.5 chemical constituents were analyzed by ED-XRF method. Plasma biomarkers of endothelial function and inflammation were measured using multiplexed immunoassays. Robust multiple linear regression models were used to estimate the associations among personal PM2.5 exposure and chemical constituents, BP changes (compared with pre-pregnancy BP) and plasma biomarkers. Mediation analyses were performed to evaluate underlying potential pathways. Result showed that exposure to PM2.5 was significantly associated with increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) in the early second trimester. Meanwhile, elevated concentration of lead (Pb) constituent in PM2.5 was significant associated with increases in DBP and MAP after adjusting for PM2.5 total mass. PM2.5 and Pb constituent also presented positive associations with plasma biomarkers of endothelial function (ET-1, E-selectin, ICAM-1) and inflammation (IL-1β, IL-6, TNFα) significantly. After multiple adjustment, elevated ET-1 and IL-6 were significantly correlated with increased gestational BP, and respectively mediated 1.24%–25.06% and 7.01%–10.69% of the increased BP due to PM2.5 and Pb constituent exposure. In conclusion, our results suggested that personal exposure to PM2.5 and Pb constituent were significantly associated with increased BP during pregnancy, and the early second trimester might be the sensitive window of PM2.5 exposure. The endothelial dysfunction and elevated inflammation partially mediated the effect of PM2.5 and Pb constituent on BP during pregnancy.
اظهر المزيد [+] اقل [-]Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis
2017
Song, Yu–Feng | Hogstrand, Christer | Wei, Chuan-Chuan | Wu, Kun | Pan, Ya–Xiong | Luo, Zhi
The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipolytic metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress–cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.
اظهر المزيد [+] اقل [-]Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn
2015
Niu, Li-qin | Jia, Pu | Li, Shao-peng | Kuang, Jia-liang | He, Xiao-xin | Zhou, Wen-hua | Liao, Bin | Shu, Wen-sheng | Li, Jin-tian
Heavy metal contamination of agricultural soils is of worldwide concern. Unfortunately, there are currently no efficient and sustainable approaches for addressing this concern. In this study, we conducted a field experiment in which an agricultural soil highly contaminated by cadmium (Cd), lead (Pb) and zinc (Zn) was treated on-site by an ancient agricultural technique, ‘slash-and-char’, that was able to convert the biomass feedstock (rice straw) into biochar in only one day. We found evidence that in comparison to the untreated soil, the treated soil was associated with decreased bioavailability of the heavy metals and increased vegetable yields. Most importantly, the treatment was also coupled with dramatic reductions in concentrations of the heavy metals in vegetables, which made it possible to produce safe crops in this highly contaminated soil. Collectively, our results support the idea that slash-and-char offers new promise for management of soils contaminated by Cd, Pb and Zn.
اظهر المزيد [+] اقل [-]