خيارات البحث
النتائج 1021 - 1030 من 4,940
The euryhaline pygmy mussel, Xenostrobus securis, is a useful biomonitor of key metal contamination in the highly urbanised Sydney Estuary, Australia
2019
Markich, Scott J. | Jeffree, Ross A.
This study critically evaluated the native pygmy mussel (Xenostrobus securis) as a biomonitor of the key metal contaminants in the highly urbanised Sydney Estuary, south-eastern Australia. Five metals (Cd, Cr, Cu, Pb and Zn) were identified as key contaminants, based on their enrichment factors (EFs) in the whole soft tissue of X. securis at 24 sampling sites, relative to baseline values from near-pristine reference sites in the adjacent Hawkesbury Estuary. Inverse relationships established between mussel size (dry tissue weight) and tissue concentrations of each metal were used to reduce variance (by 4-fold) among individuals; gender and reproductive status had no significant (p > 0.05) effect on tissue metal concentrations in X. securis. Metal concentrations in three environmental matrices – filtered (<0.2 μm) surface water (operationally defined as the dissolved/colloidal phase), suspended particulate matter (SPM; >0.2 μm) and surface sediment (<2 mm particle size), which are most relevant to a suspension-feeding estuarine bivalve, were also determined at each sampling site. For each of the five metals, highly significant (p < 0.01) positive linear regressions were established between metal EFs for mussel tissue and each environmental matrix. Metals in surface sediment and SPM explained 80–91% and 81–90%, respectively, of the variability in metal concentrations in mussel tissue, with filtered surface water explaining 74–86%. Cumulative mussel tissue EFs of all five metals, when regressed against each environmental matrix, showed that surface sediment concentrations explained 93% of their variability between sites, SPM 94% and filtered surface water 87–90%. Hence, X. securis very closely reflects the metal concentrations in its aquatic environment. The study provides a quality-assured benchmark of key metal contamination in the Sydney Estuary, and an appropriate methodology that may be used to discern any changes in metal contaminant status using X. securis.
اظهر المزيد [+] اقل [-]Microplastic removal by Red Sea giant clam (Tridacna maxima)
2019
Arossa, Silvia | Martin, Cecilia | Rossbach, Susann | Duarte, Carlos M.
This study assesses for the first time the ingestion of microplastics by giant clams and evaluates their importance as a sink for this pollutant. A total of 24 individuals of two size classes were collected from the Red Sea and then exposed for 12 days to 4 concentrations of polyethylene microbeads ranging from 53 to 500 μm. Experiments revealed that clams actively take up microplastic from the water column and the average of beads retained inside the animal was ∼7.55 ± 1.89 beads individual −1 day −1 (5.76 ± 1.16 MPs/g dw). However, the digestive tract itself cannot be considered the only sink of microbeads in Tridacnids. Indeed, shells play a key role as well. The abundance of microplastic adhering to the shells, which was estimated directly, was positively correlated to the concentration of beads found in the surrounding seawater. Therefore, clams’ shells contribute to the removal of 66.03 ± 2.50% of the microplastic present in the water column. Furthermore, stress responses to the exposure to polyethylene were investigated. Gross Primary Production:Respiration (GPP:R) ratio decreased throughout of the experiment, but no significant difference was found between treatments and controls.
اظهر المزيد [+] اقل [-]The effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome
2019
Gissi, Francesca | Reichelt-Brushett, Amanda J. | Chariton, Anthony A. | Stauber, Jenny L. | Greenfield, Paul | Humphrey, Craig | Salmon, Matt | Stephenson, Sarah A. | Cresswell, Tom | Jolley, Dianne F.
The potential impacts of mining activities on tropical coastal ecosystems are poorly understood. In particular, limited information is available on the effects of metals on scleractinian corals which are foundation species that form vital structural habitats supporting other biota. This study investigated the effects of dissolved nickel and copper on the coral Acropora muricata and its associated microbiota. Corals collected from the Great Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 μg Ni/L) or copper (4, 11, 32 and 65 μg Cu/L) in flow through chambers at the National Sea Simulator, Townsville, Qld, Australia. After a 96-h exposure DNA metabarcoding (16S rDNA and 18S rDNA) was undertaken on all samples to detect changes in the structure of the coral microbiome. The controls remained healthy throughout the study period. After 36 h, bleaching was only observed in corals exposed to 32 and 65 μg Cu/L and very high nickel concentrations (9050 μg Ni/L). At 96 h, significant discolouration of corals was only observed in 470 and 900 μg Ni/L treatments, the highest concentrations tested. While high concentrations of nickel caused bleaching, no changes in the composition of their microbiome communities were observed. In contrast, exposure to copper not only resulted in bleaching, but altered the composition of both the eukaryote and bacterial communities of the coral's microbiomes. Our findings showed that these effects were only evident at relatively high concentrations of nickel and copper, reflecting concentrations observed only in extremely polluted environments. Elevated metal concentrations have the capacity to alter the microbiomes which are inherently linked to coral health.
اظهر المزيد [+] اقل [-]Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach
2019
Li, Xintong | Zhang, Xiaodong
An accurate estimation of PM2.5 (fine particulate matters with diameters ≤ 2.5 μm) concentration is critical for health risk assessment and generating air pollution control strategies. In this study, a hybrid remote sensing and machine learning approach, named RSRF model is proposed to estimate daily ground-level PM2.5 concentrations, which integrates Random Forest (RF), one of machine learning (ML) models, and aerosol optical depth (AOD), one of remote sensing (RS) products. The proposed RSRF model provides an opportunity for an adequate characterization of real-time spatiotemporal PM2.5 distributions at uninhabited places and complex surfaces. It also offers advantages in handling complicated non-linear relationships among a large number of meteorological, environmental and air pollutant factors, as well as ever-increasing environmental data sets. The applicability of the proposed RSRF model is tested in the Beijing-Tianjin-Hebei region (BTH region) during 2015–2017. Deep Blue (DB) AOD from Aqua-retrieved Collection 6.1 (C_61) aerosol products of Moderate Resolution Imaging Spectroradiometer (MODIS) is validated with Aerosol Robotic Network. The validation results indicate C_61 DB AOD has a high correlation with ground based AOD in the BTH region. The proposed RSRF model performed well in characterizing spatiotemporal variations of annual and seasonal PM2.5 concentrations. It not only is useful to quantify the relationships between PM2.5 and relevant factors such as DB AOD, meteorological and air pollutant variables, but also can provide decision support for air pollution control at a regional environment during haze periods.
اظهر المزيد [+] اقل [-]Bisphenols (A, S, and F) affect the basic hormonal activity determined for pharmaceuticals – Study of Saccharomyces cerevisiae
2019
Kudłak, Błażej | Wieczerzak, Monika | Namieśnik, Jacek
Pharmaceuticals and analogs of bisphenol A (BPA) are increasingly threatening environmental pollutants. In this study, mixtures of selected pharmaceuticals (diclofenac sodium salt, chloramphenicol, oxytetracycline hydrochloride, fluoxetine hydrochloride, estrone, ketoprofen, progesterone, gemfibrozil and androstenedione) were prepared with BPA and its two analogs (namely, bisphenols F and S) at such ratios to reflect environmentally detectable levels. Then, the mixture solutions were studied with a XenoScreen YES/YAS assay to determine the variations in the initial hormonal response of each pharmaceutical compound due to the presence of a bisphenol analog. The results obtained were modeled with the concentration addition (CA) and independent action (IA) approaches, the trueness of which was studied with model deviation ratios (MDR). The estrogenic agonistic activity of the drugs studied was most strongly affected by the presence of BPA in solution (twenty-one cases of synergy observed for CA models versus twelve cases of antagonism in the case of IA predictions). BPS shows a strong agonistic estrogenic impact on most of the drugs studied at medium and high concentration levels; androgenic agonistic activity was also impaired with elevated concentrations of BPS. Increasing the concentration of BPF in a reaction mixture also increased the number of YES + synergism incidences (for CA modeling). Estrone, progesterone and androstenedione were mostly affected by the highest BPF concentrations studied in the case of androgenic agonistic research performed.
اظهر المزيد [+] اقل [-]Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study
2019
Gao, Yang | Ren, Xuemei | Zhang, Xiaodong | Chen, Changlun
Currently, there is little comparative data on the colloidal stability and the toxicity of ultraviolet (UV)- and visible-light (VL)-transformed graphene oxide (GO). In order to identify this knowledge gap, the physicochemical properties of UV/VL-transformed GO are investigated in detail. Attempts are made to correlate the physicochemical alterations of UV/VL-transformed GO to the observed changes in its colloidal properties and toxicity. The results show that both UV and VL irradiations induce the significant change in the color, UV–vis absorbance, morphology, surface charge, size, oxygen containing functional groups, total of carbon, and photoluminescence properties of GO. The photo-reaction behavior of GO under UV exposure is different from that under VL irradiation in terms of reaction rate, order, and extent. Finally, the UV and VL irradiations show different effects not only on the colloidal stability of GO in the City water and Dongpu Lake water, but also on the toxicity of GO to Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. This study clearly shows how the environmental fate and risk of GO are modified by UV and VL irradiations.
اظهر المزيد [+] اقل [-]Recent advances for dyes removal using novel adsorbents: A review
2019
Zhou, Yanbo | Lu, Jian | Zhou, Yi | Liu, Yongdi
Dyeing wastewaters are toxic and carcinogenic to both aquatic life and human beings. Adsorption technology, as a facile and effective method, has been extensively used for removing dyes from aqueous solutions for decades. Numerous researchers have attempted to seek or design alternative materials for dye adsorption. However, using various novel adsorbents to remove dyes has not been extensively reviewed before. In this review, the key advancement on the preparation and modification of novel adsorbents and their adsorption capacities for dyes removal under various conditions have been highlighted and discussed. Specific adsorption mechanisms and functionalization methods, particularly for increasing adsorption capacities are discussed for each adsorbent. This review article mainly includes (1) the categorization, side effects and removal technologies of dyes; (2) the characteristics, advantages and limitations of each sort of adsorbents; (3) the functionalization and modification methods and controlling mechanisms; and (4) discussion on the problems and future perspectives about adsorption technology from adsorbents aspects and practical application aspects.
اظهر المزيد [+] اقل [-]Association between extracted copper and dissolved organic matter in dairy-manure amended soils
2019
Araújo, Eloá | Strawn, Daniel G. | Morra, M. J. (Matthew John) | Moore, Amber | Ferracciú Alleoni, Luis Reynaldo
Dairy manure often has elevated concentrations of copper (Cu) that when applied to soil may create toxicity risks to seedlings and soil microbes. Manure application also increases dissolved organic matter (DOM) in soil solution. We hypothesize that high rates of dairy manure amendment over several years will cause increased DOM in the soil that complexes Cu, increasing its mobility. To test this hypothesis, this study investigated water soluble Cu concentrations and dissolved organic carbon (DOC) in soil samples from 3 years of manure-amended soils. Samples were collected at two depths over the first 3 years of a long-term manure-amendment field trial. DOC, Cu, Fe, and P concentrations were measured in water extracts from the samples. Ultraviolet/visible (UV/Vis) spectra were used to assess the DOC characteristics. After 3 years of manure application, extractable Cu concentration was approximately four times greater in the surface and two times greater in subsurface samples of manure-amended soils as compared to non-amended control soils and traditional mineral fertilizer-amended soils. The extractable Cu concentration was greatest in plots that had the highest manure amendment rates (35 t ha⁻¹ and 52 t ha⁻¹, dry weight). The UV/Vis parameters SUVA₂₅₄ and E₂/E₃ correlated with Cu concentration in the extracts (p < 0.05), suggesting that DOC characteristics are important in Cu-binding. The molecular characteristics of the DOC in the subsurface after 3 years of manure amendment were distinct from the DOC in the control plot, suggesting that manure amendment creates mobile DOC that may facilitate Cu mobilization through soil. The 10-fold increase in extractable Cu concentration after only 3 years of manure application indicates that repeated applications of the dairy manure sources used in this study at rates of 35 t/ha or greater may create risks for Cu toxicity and leaching of Cu into ground and surface waters.
اظهر المزيد [+] اقل [-]Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution
2019
Liu, Desheng | Huang, Zheng | Li, Minna | Sun, Ping | Yu, Ting | Zhou, Lincheng
Magnetic β-cyclodextrin (β-CD) porous polymer nanospheres (P-MCD) was fabricated by one-pot solvent thermal method using β-CD immobilized Fe3O4 magnetic nanoparticles with tetrafluoroterephthalonitrile as the monomer. Compared with the β-CD polymerization method reported in the literature,_ENREF_1 the synthetic route is effective and simple, thereby overcoming the harsh conditions that require nitrogen protection and always maintain anhydrous and oxygen-free. Moreover, the immobilization of β-CD on magnetic nanoparticles is combined with the cross-linking polymerization of the cross-linker, leading to a good synergistic effect on the removal of contaminants. Meanwhile, the dispersibility of the magnetic carrier enhances the dispersion of the β-CD porous polymer in the aqueous phase, and improves the inclusion adsorption performance and the adsorption process. P-MCD exhibited superior adsorption capacity and fast kinetics to MB. The maximum adsorption capacity of MB for P-MCD was 305.8 mg g −1, which is more than β-CD modified Fe3O4 magnetic nanoparticles (Fe3O4@β-CD). Moreover, the material had a short equilibrium time (5 min) for MB, high recovery and good recyclability (the adsorption efficiency was still above 86% after five repeated uses).
اظهر المزيد [+] اقل [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
اظهر المزيد [+] اقل [-]