خيارات البحث
النتائج 1021 - 1030 من 7,214
Occurrence, fate and risk assessment of per- and polyfluoroalkyl substances in wastewater treatment plants in Shaanxi, China
2022
Chen, Wenbin | Yang, Fang | Hu, En | Yang, Chenghua | Sun, Changshun | Li, Ming
Wastewater treatment plants (WWTPs) are considered as major sinks for per- and polyfluoroalkyl substances (PFASs). However, conventional WWTPs with low efficiency are also a secondary point source of PFASs entering the environment. Herein, a large-scale investigation of PFASs was conducted in 44 WWTPs throughout Shaanxi Province in the transitional zone between North and South China. The composition profiles of target PFASs differed between wastewater and sludge samples. Perfluorobutanoic acid was dominant in wastewater influent and effluent samples, with maximum concentrations of 59.8 and 11.4 ng/L, respectively. Perfluorooctane sulfonic acid occurred predominantly in sludge samples, with a maximum concentration of 73.2 ng/g. Through wastewater treatment, short-chain PFASs with an even number of carbon atoms were mostly removed, whereas short-chain PFASs with an odd number of carbon atoms were primarily discharged into receiving water. Long-chain PFASs (perfluoroalkyl carboxylic acids: C ≥ 8; perfluoroalkane sulfonic acids: C ≥ 6) were not removed efficiently and secondary production might occur during treatment. Based on the risk quotient, PFASs residues in wastewater effluent posed minimal ecological risk, but the residues in sludge posed low to high potential risk. The mass loadings of PFASs discharged through wastewater and sludge were 15.5 and 3.74 kg/year, respectively, from all WWTPs in Shaanxi Province.
اظهر المزيد [+] اقل [-]Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis
2022
Zhang, Siqi | Breitner, Susanne | Pickford, Regina | Lanki, Timo | Okokon, Enembe | Morawska, L. (Lidia) | Samoli, Evangelia | Rodopoulou, Sophia | Stafoggia, Massimo | Renzi, Matteo | Schikowski, Tamara | Zhao, Qi | Schneider, Alexandra | Peters, Annette
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm³ in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, −0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
اظهر المزيد [+] اقل [-]Facilitated transport of microplastics and nonylphenol in porous media with variations in physicochemical heterogeneity
2022
Xu, Lilin | Liang, Yan | Zhang, Rupin | Xu, Baile | Liao, Changjun | Xie, Tian | Wang, Dengjun
Nonylphenol (Noph) has garnered worldwide concern as a typical endocrine disruptor due to its toxicity, estrogenic properties, and widespread contamination. To better elucidate the interaction of Noph with ubiquitously existing microplastics (MPs) and the potential interdependence of their transport behaviors, batch adsorption and column experiments were conducted, paired with mathematical modeling. Compared with sand, MPs and soil colloids show stronger adsorption affinity for Noph due to the formation of hydrogen bonding and the larger numbers of interaction sites that are available on solid surfaces. Limited amount of soil-colloid coating on sand grains significantly influenced transport behaviors and the sensitivity to solution chemistry. These coatings led to a monotonic increase in Noph retention and a nonmonotonic MPs retention in single systems because of the altered physicochemical properties. The mobility of both MPs and Noph was enhanced when they coexisted, resulting from their association, increased electrostatic repulsion, and competition on retention sites. Limited release of MPs and Noph (under reduced ionic strength (IS) and increased pH) indicated strong interactions in irreversible retention. The retention and release of Noph were independent of IS and solution pH. A one-site model with a blocking term and a two-site kinetic model well described the transport of MPs and Noph, respectively. Our findings highlight the essential roles of coexisting MPs and Noph on their transport behaviors, depending on their concentrations, IS, and physicochemical properties of the porous media. The new knowledge from this study refreshes our understanding of the co-transport of MPs and organic contaminants such as Noph in the subsurface.
اظهر المزيد [+] اقل [-]Transfer of elements into boreal forest ants at a former uranium mining site
2022
Roivainen, Päivi | Muurinen, Saara-Maria | Sorvari, Jouni | Juutilainen, Jukka | Naarala, Jonne | Salomaa, Sisko
Ants can influence ecological processes, such as the transfer of elements or radionuclides, in several ways. For example, they redistribute materials while foraging and maintaining their nests and have an important role in terrestrial food webs. Quantitative data of the transfer of elements into ants is needed, e.g., for developing improved radioecological models. In this study, samples of red wood ants (genus Formica), nest material, litter and soil were collected from a former uranium mining site in Eastern Finland. Concentrations of 33 elements were analyzed by Inductively Coupled Plasma-Mass Spectroscopy/Optical Emission Spectroscopy. Estimated element concentrations in spruce needles were used as a proxy for studying the transfer of elements into ants via aphids because spruces host the most important aphid farms in boreal forests. Empirically determined organism/medium concentration ratios (CRs) are commonly used in radioecological models. Ant/soil CRs were calculated and the validity of the fundamental assumption behind the of use of CRs (linear transfer) was evaluated. Elements that accumulated in ants in comparison to other compartments were cadmium, potassium, phosphorus, sulfur, and zinc. Ant uranium concentrations were low in comparison to soil, litter, or nest material but slightly elevated in comparison to spruce needles. Ant element concentrations were quite constant regardless of the soil concentrations. Non-linear transfer models could therefore describe the soil-to-ant transfer better than conventional CRs.
اظهر المزيد [+] اقل [-]Tissue distribution of phthalates in celery under different cultivation patterns and associated dietary exposure
2022
Zhao, Fang | Ma, Zhihong | Ping, Hua | He, Zhaoying | Li, Bingru | Gao, Yuan | Li, Cheng
To investigate tissue distribution, spatial difference, temperature variation, and potential health risks of PAEs in vegetables, celery was used as a model plant. Celery samples were collected from open fields and greenhouses from two provinces in China over four seasons. Celery tissues were analyzed for 16 PAE compounds by gas chromatography–tandem mass spectrometry. The total content of PAEs was 89.0–1130.3 μg kg⁻¹ dry weight (dw) in stems and 155.0–2730.8 μg kg⁻¹ dw in leaves. Concentrations of PAEs in celeries showed notable spatial differences (P < 0.05), and the levels in samples from open fields were lower than those in samples from plastic greenhouses. In celeries from greenhouses, higher PAE concentrations were observed for plants grown at high temperatures than in plants grown at low temperatures. Discrepancies in tissue distribution indicated different uptake pathways of PAE contaminants. Risk assessments to humans found that both carcinogenic risks and non-carcinogenic risks of PAEs via celery consumption were at an acceptable level. Further research should consider other exposure pathways of PAEs and pay special attention to reducing PAE contents in vegetables.
اظهر المزيد [+] اقل [-]Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes
2022
Bao, Shaopan | Xiang, Dongfang | Xue, Lu | Xian, Bo | Tang, Wei | Fang, Tao
Zinc oxide nanoparticles (ZnO NPs) and its sulfidized form (ZnS NPs) are increasingly entering into freshwater systems through multiple pathways. However, their impacts on the composition and function of sedimentary microbial communities are still largely unknown. Here, two kinds of lake-derived microcosms were constructed and incubated with ZnO NPs, or ZnS NPs to investigate the short-term (7 days) and long-term (50 days) impacts on sedimentary microbial communities and nitrogen cycling. After 7 days, both ZnO NPs and ZnS NPs dosed microbial communities experienced distinct alterations as compared to the undosed controls. By day 50, the structural shifts of microbial communities caused by ZnO NPs were significantly enlarged, while the microbial shifts induced by ZnS NPs were largely resolved. Additionally, ZnO NPs and ZnS NPs could significantly alter nitrogen species and nitrogen cycling genes in sediments, revealing their non-negligible impacts on nitrogen cycling processes. Furthermore, our data clearly indicated that the impacts of ZnO NPs and ZnS NPs on nitrogen cycling differed distinctly in different lake-derived microcosms, and the impacts were significantly correlated with microbial community structure. Overall, this research suggests that the entrance of pristine or sulfidized ZnO NPs into freshwater systems may significantly impact the sedimentary microbial community structure and nitrogen cycling.
اظهر المزيد [+] اقل [-]Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy
2022
Fueser, Hendrik | Pilger, Christian | Kong, Cihang | Huser, Thomas | Traunspurger, W. (Walter)
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
اظهر المزيد [+] اقل [-]Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota
2022
Yan, Sen | Tian, Sinuo | Meng, Zhiyuan | Sun, Wei | Xu, Ning | Jia, Ming | Huang, Shiran | Wang, Yu | Zhou, Zhiqiang | Diao, Jinling | Zhu, Wentao
Although many toxicological studies on pesticides and nanoparticles have been conducted, it is not clear whether nanoparticles will increase the toxicity of pesticides. In this study, we chose imidacloprid (IMI) as a representative pesticide, and explored the influence of ZnO NPs on the toxic effect of IMI. In addition, we studied the bioaccumulation of IMI in mice. Using biochemical index analysis, liver histopathological analysis, non-targeted metabolomics, and LC/MS analysis, we found that ZnO NPs increased the toxicity of IMI, which may be related to the increase in IMI bioaccumulation in mice. In addition, we used intestinal histopathological analysis, RT-qPCR, and 16sRNA sequencing to find that the disturbance of the gut microbiota and the impaired intestinal barrier caused by ZnO NPs may be the reason for the increase in IMI bioaccumulation. In summary, our results indicate that ZnO NPs disrupted the intestinal barrier and enhanced the bioaccumulation of IMI, and therefore increased the toxicity of IMI in mice. Our research has deepened the toxicological insights between nanomaterials and pesticides.
اظهر المزيد [+] اقل [-]Lighting up our waterways: Impacts of a current mitigation strategy on riparian bats
2022
Hooker, Jack | Lintott, Paul | Stone, Emma
Increasing levels of artificial light at night (ALAN) are a major threat to global biodiversity and can have negative impacts on a wide variety of organisms and their ecosystems. Nocturnal species such as bats are highly vulnerable to the detrimental effects of ALAN. A variety of lighting management strategies have been adopted to minimise the impacts of ALAN on wildlife, however relatively little is known about their effectiveness. Using an experimental approach, we provide the first evidence of negative impacts of part-night lighting (PNL) strategies on bats. Feeding activity of Myotis spp. was reduced along rivers exposed to PNL despite no reduction in overall bat activity. We also provide the first evidence of negative effects of PNL on both feeding and activity for Pipistrellus pipistrellus which has previously been recorded feeding under artificial light. Despite having considerable energy-saving benefits, we outline the potential negative impacts of PNL schemes for bats in riparian habitats. PNL are unlikely to provide desired conservation outcomes for bats, and can potentially fragment important foraging habitats leading to a breakdown of functional connectivity across the landscape. We highlight the potential dichotomy for strategies which attempt to simultaneously address climate change and biodiversity loss and recommend alternative management strategies to limit the impacts of ALAN on biodiversity.
اظهر المزيد [+] اقل [-]Antlers of European roe deer (Capreolus capreolus) as monitoring units to assess lead pollution in a floodplain contaminated by historical metal ore mining, processing, and smelting in the Harz Mountains, Germany
2022
Ludolphy, Catharina | Kierdorf, Uwe | Kierdorf, Horst
Lead concentrations in hard antlers of adult European roebucks (Capreolus capreolus) were analyzed to assess lead exposure of roe deer roaming the floodplain of the Innerste River, a river system contaminated due to historical metal ore mining, processing, and smelting in its upper reaches. Antler lead concentrations of roebucks culled in the period 1939–2018 within or close to the Innerste floodplain ranged between <0.17 mg Pb/kg (limit of detection) and 51.5 mg Pb/kg (air-dry weight). Median lead concentration in antlers of roebucks culled within the floodplain was 11.1 mg Pb/kg, compared to 2.3 mg Pb/kg in antlers of bucks culled in the floodplain vicinity (P < 0.01). Sampling year had no significant effect on antler lead concentrations (P = 0.748). Lead isotope ratios of antlers from the Innerste downstream area (²⁰⁶Pb/²⁰⁷Pb: 1.179–1.181; ²⁰⁸Pb/²⁰⁶Pb: 2.083–2.085) fell within the range of those reported for hydrothermal vein deposits from the upper catchment area of the Innerste River in the Harz Mountains. Our study demonstrates the long-lasting impact of the historical metal ore mining, processing, and smelting in the Harz Mountains on lead pollution in floodplains of rivers draining this area and the lead exposure of wild herbivores inhabiting the floodplains. Furthermore, it highlights the suitability of roe deer antlers for monitoring environmental lead levels and the usefulness of lead isotope signatures in antlers for source apportionment of lead pollution.
اظهر المزيد [+] اقل [-]