خيارات البحث
النتائج 1041 - 1050 من 5,149
Effects of the natural colloidal particles from one freshwater lake on the photochemistry reaction kinetics of ofloxacin and enrofloxacin النص الكامل
2018
Cheng, Dengmiao | Liu, Xinhui | Li, Jinpeng | Feng, Yao | Wang, Juan | Li, Zhaojun
Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 μm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65–1.0 μm), F2 (100 kD-0.65 μm), F3 (10–100 kD) and F4 (1–10 kD) by cross-flow ultrafiltration (CFUF), and the photochemical kinetics and mechanisms of ofloxacin (OFL) and enrofloxacin (ENR) were investigated in the presence of those particles under simulated sunlight. Results showed that OFL and ENR underwent both direct and indirect photolysis in F1-F4 solutions, and the observed pseudo first-order rate constants (kobs) for target compounds differed depending on the size of NCPs. Direct photolysis accounted for >50% of the degradation in all cases and was the dominant degradation pathway for the two target antibiotics with the exception of OFL in F1 solution. Except for ENR in both F3 and F4 solutions, nearly all NCPs enhanced the degradation of both target compounds by indirect photolytic pathways, especially in F1 solution that showed the largest reactivity for OFL and ENR, promoting the reactions by 63% and 41%, respectively. The excited state colloidal organic matter (3COM∗) plays a significant role in the indirect photolysis, and the adsorptions of OFL and ENR to NCPs were likely to have a pronounced effect in the photochemistry process. Pearson's correlations analysis showed that the kobs(OFL) was significant positive correlated with binding of Fe (r = 0.963, P < 0.05), and the kobs(ENR) was significant positive correlated with the adsorption percentage of OFL (r = 0.999, P < 0.01).This paper has demonstrated that different size NCPs showed the different photochemical contribution to the reaction rate for OFL and ENR.
اظهر المزيد [+] اقل [-]Development of European NO2 Land Use Regression Model for present and future exposure assessment: Implications for policy analysis النص الكامل
2018
Vizcaino, Pilar | Lavalle, Carlo
A new Land Use Regression model was built to develop pan-European 100 m resolution maps of NO2 concentrations. The model was built using NO2 concentrations from routine monitoring stations available in the Airbase database as dependent variable. Predictor variables included land use, road traffic proxies, population density, climatic and topographical variables, and distance to sea. In order to capture international and inter regional disparities not accounted for with the mentioned predictor variables, additional proxies of NO2 concentrations, like levels of activity intensity and NOx emissions for specific sectors, were also included. The model was built using Random Forest techniques. Model performance was relatively good given the EU-wide scale (R2 = 0.53). Output predictions of annual average concentrations of NO2 were in line with other existing models in terms of spatial distribution and values of concentration. The model was validated for year 2015, comparing model predictions derived from updated values of independent variables, with concentrations in monitoring stations for that year. The algorithm was then used to model future concentrations up to the year 2030, considering different emission scenarios as well as changes in land use, population distribution and economic factors assuming the most likely socio-economic trends. Levels of exposure were derived from maps of concentration. The model proved to be a useful tool for the ex-ante evaluation of specific air pollution mitigation measures, and more broadly, for impact assessment of EU policies on territorial development.
اظهر المزيد [+] اقل [-]Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms النص الكامل
2018
Hao, Yueqi | Zhao, Lixia | Sun, Yang | Li, Xiaojing | Weng, Liping | Xu, Huijuan | Li, Yongtao
Acetochlor is a widely used chloroacetanilide herbicide and has posed environmental risks in soil and water due to its toxicity and high leaching capacity. Earthworm represents the dominant invertebrate in soil and can promote the decomposition of organic pollutants. The effect of earthworm on acetochlor degradation in soil was studied by soil column experiment with or without acetochlor and earthworm in sterile and natural soils. The degradation capacities of drilosphere components to acetochlor were investigated by microcosm experiments. Bacterial and fungal acetochlor degraders stimulated by earthworm were identified by high-throughput sequencing. The degradation kinetics of acetochlor suggested that both indigenous microorganisms and earthworm played important roles in acetochlor degradation. Acetochlor degradation was quicker in soil with earthworms than without earthworms, with the degradation rates increased by 62.3 ± 15.2% and 9.7 ± 1.7% in sterile and natural treatments respectively. The result was related to the neutralized pH, higher enzyme activities and enhanced soil microbial community diversity and richness in the presence of earthworms. Earthworm cast was the degradation hotpot in drilosphere and exhibited better anaerobic degradation capacity in microcosm experiments. The acetochlor degradation rate of cast in anaerobic environment was 12.0 ± 0.1% quicker than that in aerobic environment. Residual acetochlor in soil conferred a long-term impairment on fungal community, and this inhibition could be repaired by earthworm. Earthworm stimulated indigenous degraders like Sphingomonas and Microascales and carried suspected intestinal degraders like Mortierella and Escherichia_coli to degradation process. Cometabolism between nutrition cycle species and degraders in casts also contributed to its faster degradation rates. The study also presented some possible anaerobic degradation species like Rhodococcus, Pseudomonas_fulva and Methylobacillus.
اظهر المزيد [+] اقل [-]Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure النص الكامل
2018
Song, Jiuwei | Shen, Qunli | Wang, Lu | Qiu, Gaoyang | Shi, Jiachun | Xu, Jianming | Brookes, Philip C. | Liu, Xingmei
Heavy metal pollution can decrease the soil microbial biomass and significantly alter microbial community structure. In this study, a long-term field experiment (5 years) and short-term laboratory experiment (40 d) were employed to evaluate the effects of heavy metals (Cd, Cu, Zn), and their combinations at different concentrations, on the soil microbial biomass and the bacterial community. The ranges of heavy metal concentration in the long-term and short-term experiments were similar, with concentration ranges of Cd, Cu and Zn of about 0.3–1.5, 100–500, and 150–300 mg kg⁻¹, respectively. Microbial biomass decreased with increasing soil heavy metal concentrations in both the long-term and short-term experiments. The interaction between soil physicochemical factors (pH, TN, TC) and heavy metals (Cd, Cu, Zn) played a major role in change in the bacterial community in long-term polluted soil. In the laboratory experiment, although each heavy metal had an adverse effect on the microbial biomass and community structure, Cu appeared to have a greater role in the changes compared to Cd and Zn. However, the synergistic effects of the heavy metals were greater than those of the single metals and the synergistic effect between Cu and Cd was greater than that of Cu and Zn.
اظهر المزيد [+] اقل [-]Photodegradation of 17β-estradiol on silica gel and natural soil by UV treatment النص الكامل
2018
Wang, Siyuan | Wang, Xinghao | Li, Chenguang | Xu, Xinxin | Wei, Zhongbo | Wang, Zunyao | Qu, Ruijuan
This paper evaluates the UV photodegradation of 17β-estradiol (E2) on silica gel and in natural soil with different soil components. Silica gel was chosen as a stable and pure support to simulate the photochemical behavior of E2 on the surface of natural soil. Ultraviolet light, rather than visible light, was confirmed to play a decisive role in the photodegradation of E2 on silica gel. The effect of three soil components, including humic acid (HA), inorganic salts, and relative humidity (RH), on the photochemical behavior of E2 on silica gel or soil under UV irradiation was then evaluated. Two HA concentrations (10 and 20 mg g⁻¹) and three salts (ferric sulfate, copper sulfate and sodium carbonate) were observed to obviously inhibit the degradation of E2 on silica gel. Interestingly, nitrate was found to obviously improve the removal efficiency of E2. Both too-dry and too-wet conditions obviously reduced the removal rate of E2, and the optimum relative humidity (RH) value was found to be approximately about 35% (30 °C). Furthermore, twenty intermediate products and two major pathways were proposed to describe the transformation processes of E2 treated by UV irradiation, among which oligomers were found to be the major intermediate products before complete mineralization. The efficient UV removal of E2 on silica gel and natural soil suggested a feasible strategy to remediate E2 contaminated soil.
اظهر المزيد [+] اقل [-]Characterizing benzene series (BTEX) pollutants build-up process on urban roads: Implication for the importance of temperature النص الكامل
2018
Liu, An | Hong, Nian | Zhu, Panfeng | Guan, Yuntao
Benzene series (BTEX) pollutants which are generated by traffic can deposit (build-up) on urban road surfaces. When they are washed-off by stormwater runoff, BTEX are toxic to ecological and human health if the stormwater is reused. To understand the risk posed by BTEX, it is essential to have an in-depth investigation on BTEX build-up, one of the most important stormwater pollutant processes. This study analysed the relationship between BTEX build-up and BTEX build-up's influential factors. The outcomes confirmed an important role of climatic factors (particularly temperature) on influencing BTEX build-up. This has not been considered in previous stormwater studies although this has been widely focused in atmospheric pollution. BTEX build-up loads were generally higher and the variability was low in dry seasons with low temperature such as winter and spring. Additionally, the influence of temperature on BTEX build-up on urban road surfaces is more important in the case of larger particles (such as >75 μm) than smaller particles. The study also showed that petrol station areas have a potential to export stormwater runoff with high BTEX concentrations, compared to typical urban roads. This is particularly applicable in winter and spring. These outcomes can provide useful guidance to improving stormwater quality modelling approaches, especially relevant to estimation of BTEX concentrations in the stormwater.
اظهر المزيد [+] اقل [-]Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface النص الكامل
2018
Tomašek, Ines | Horwell, Claire J. | Bisig, Christoph | Damby, David E. | Comte, Pierre | Czerwiński, Janusz | Petri-Fink, Alke | Clift, Martin J.D. | Drasler, Barbara | Rothen-Rutishauser, Barbara
Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of volcanic ash and gasoline vehicle exhaust has a limited short-term biological impact to an advanced lung cell in vitro model.
اظهر المزيد [+] اقل [-]Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice النص الكامل
2018
Morales-Prieto, Noelia | Ruiz-Laguna, Julia | Sheehan, David | Abril, Nieves
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p’-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p’-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p’-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p’-DDE exposure counteractive strategies.
اظهر المزيد [+] اقل [-]Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China النص الكامل
2018
Li, Heng-Xiang | Ma, Li-Sha | Lin, Lang | Ni, Zhi-Xin | Xu, Xiang-Rong | Shi, Hua-Hong | Yan, Yan | Zheng, Guang-Ming | Rittschof, Daniel
As a transitional zone between riverine and marine environments, an estuary plays an important role for the sources, accumulation and transport of microplastics. Although estuarine environments are hotspots of microplastic pollution, the correlation between microplastic pollution and aquatic organisms is less known. Here we investigated microplastic pollution in wild oysters Saccostrea cucullata from 11 sampling sites along the Pearl River Estuary in South China. The microplastic abundances in oysters ranged from 1.4 to 7.0 items per individual or from 1.5 to 7.2 items per gram tissue wet weight, which were positively related to those in surrounding waters. The oysters near urban areas contained significantly more microplastics than those near rural areas. Fibers accounted for 69.4% of the total microplastics in oysters. Microplastic sizes varied from 20 to 5000 μm and 83.9% of which were less than 100 μm. Light color microplastics were significantly more common than dark color ones. Based on the results, oysters are recommended as a biomonitor for the microplastic pollution in estuaries.
اظهر المزيد [+] اقل [-]Air quality impacted by local pollution sources and beyond – Using a prominent petro-industrial complex as a study case النص الكامل
2018
Chen, Sheng-Po | Wang, Chieh-Heng | Lin, Wen-Dian | Tong, Yu-Huei | Chen, Yu-Chun | Chiu, Ching-Jui | Jiang, Hongji | Fan, Chen-Lun | Wang, Jia-Lin | Chang, Julius S.
The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality.Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO2) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO2 and wind parameters. The SO2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain.
اظهر المزيد [+] اقل [-]