خيارات البحث
النتائج 1041 - 1050 من 6,548
Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting النص الكامل
2020
Wang, Alana O. | Ptacek, Carol J. | Paktunc, Dogan | Mack, E Erin | Blowes, David W.
This study evaluated three biochars derived from bioenergy by-products — manure-based anaerobic digestate (DIG), distillers’ grains (DIS), and a mixture thereof (75G25S) — as amendments to stabilize Hg in contaminated floodplain soil under long-term saturated (up to 200 d) and cyclic drying and rewetting conditions. Greater total Hg (THg) removal (72 to nearly 100%) and limited MeHg production (<65 ng L⁻¹) were observed in digestate-based biochar-amended systems under initial saturated conditions. Drying and rewetting resulted in limited THg release, increased aqueous MeHg, and decreased solid MeHg in digestate-based biochar-amended systems. Changes in Fe and S chemistry as well as microbial communities during drying and rewetting potentially affected MeHg production. Digestate-based biochars may be more effective as amendments to control Hg release and minimize MeHg production in floodplain soils under long-term saturated and drying and rewetting conditions compared to distillers’ grains biochar.
اظهر المزيد [+] اقل [-]Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas النص الكامل
2020
Peng, Weihan | Yang, Jiacheng | Corbin, Joel | Trivanovic, Una | Lobo, Prem | Kirchen, Patrick | Rogak, Steven | Gagné, Stéphanie | Miller, J Wayne | Cocker, David
New environmental regulations are mandating cleaner fuels and lower emissions from all maritime operations. Natural gas (NG) is a fuel that enables mariners to meet regulations; however, emissions data from maritime operations with natural gas is limited. We measured emissions of criteria, toxic and greenhouse pollutants from a dual-fuel marine engine running either on diesel fuel or NG as well as engine activity and analyzed the impacts on pollutants, health, and climate change. Results showed that particulate matter (PM), black carbon (BC), nitric oxides (NOₓ), and carbon dioxide (CO₂) were reduced by about 93%, 97%, 92%, and 18%, respectively when switching from diesel to NG. Reductions of this magnitude provide a valuable tool for the many port communities struggling with meeting air quality standards. While these pollutants were reduced, formaldehyde (HCHO), carbon monoxide (CO) and methane (CH₄) increased several-fold. A health risk assessment of exhaust plume focused on when the vessel was stationary, and at-berth showed the diesel plume increased long-term health risk and the NG plume increased short-term health risk. An analysis of greenhouse gases (GHGs) and BC was performed and revealed that, on a hundred year basis, the whole fuel cycle global warming potential (GWP) per kWh including well-to-tank and exhaust was 50% to few times higher than that of diesel at lower engine loads, but that it was similar at 75% load and lower at higher loads. Mitigation strategies for further reducing pollutants from NG exhaust are discussed and showed potential for reducing short-term health risks and climate impacts.
اظهر المزيد [+] اقل [-]Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil النص الكامل
2020
Zhang, Houpu | Chen, Shiyu | Zhang, Qianke | Long, Zhengnan | Yu, Yunlong | Fang, Hua
Long-term substantial application of fungicides in greenhouse cultivation led to residual pollution in soils and then altered soil microbial community. However, it is unclear whether residual fungicides could affect the diversity and abundance of antibiotic resistance genes (ARGs) in greenhouse soils. Here, the dissipation of fungicides and its impact on the abundance of ARGs were determined using shotgun metagenomic sequencing in the greenhouse and mountain soils under laboratory conditions. Our results showed the greenhouse soils harbored more diverse and abundant ARGs than the mountain soils. The application of carbendazim, azoxystrobin, and chlorothalonil could increase the abundance of total ARGs in the greenhouse soils, especially for those dominant ARG subtypes including sul2, sul1, aadA, tet(L), tetA(G), and tetX2. The abundant ARGs were significantly correlated with mobile genetic elements (MGEs, e.g. intI1and R485) in the greenhouse soils but no significant relationship in the mountain soils. Meanwhile, the co-occurrence patterns of ARGs and MGEs, e.g., sul2 and R485, sul1 and transposase, were further verified via the genetic arrangement of genes on the metagenome-assembled contigs in the greenhouse soils. Additionally, host tracking analysis indicated that ARGs were mainly carried by enterobacteria in the greenhouse soils but actinomyces in the mountain soils. These findings confirmed that some fungicides might serve as the co-selectors of ARGs and elevated their abundance via MGEs-mediated horizontal gene transfer in the greenhouse soils.
اظهر المزيد [+] اقل [-]One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life النص الكامل
2020
Wang, Zhen | Berninger, Jason P. | Yau, Ching | Brooks, Bryan W.
In ecological risk assessment, acute to chronic ratio (ACR) uncertainty factors are routinely applied to acute mortality benchmarks to estimate chronic toxicity thresholds. To investigate variability of aquatic ACRs, we first compiled and compared 56 and 150 pairs of acute and subchronic/chronic growth/reproductive toxicity data for fishes (Pimephales promelas (53), Danio rerio (2), and Oryzias latipes (1)) and the crustacean Daphnia magna, respectively, for 172 chemicals with different modes of action (MOA). We found that there were only significant relationships between P. promelas acute median lethal concentrations and growth lowest-observed effect concentrations for class 1 (nonpolar narcosis) chemicals, though significant relationships were demonstrated for D. magna to all Verhaar et al. MOA classes (Class 1: nonpolar narcosis, Class 2: polar narcosis, Class 3: reactive chemicals, and Class 4: AChE inhibitors and estrogenics). Probabilistic ecological hazard assessment using chemical toxicity distributions was subsequently employed for each MOA class to estimate acute and chronic thresholds, respectively, to identify MOA and species specific ecological thresholds of toxicological concern. Finally, novel MOA and species specific ACRs using both chemical toxicity distribution comparison and individual ACR probability distribution approaches were identified using representative MOA and chemical categories. Our data-driven approaches and newly identified ACR values represent robust alternatives to application of default ACR values, and can also support future research and risk assessment and management activities for other chemical classes when toxicity information is limited for chemicals with specific MOAs within invertebrates and fish.
اظهر المزيد [+] اقل [-]Distribution of total mercury and methylmercury and their controlling factors in the East China Sea النص الكامل
2020
Liu, Chang | Chen, Lufeng | Liang, Shengkang | Li, Yanbin
Mercury (Hg) is among contaminants of public concern due to its prevalent existence, high toxicity, and bioaccumulation through food chains. Elevated Hg has been detected in seafood from the East China Sea (ECS), which is one of the largest marginal seas and an important fishing region in the northwestern Pacific Ocean. However, there is still a lack of knowledge on the distribution of Hg species and their controlling factors in the ECS water column, thus preventing the understanding of Hg cycling and the assessment of Hg risks in the ECS. In this study, two cruises were conducted in October 2014 and June 2015 in order to investigate the distribution of total Hg (THg) and methylmercury (MeHg) and their controlling factors in the ECS. The concentrations of THg and MeHg were determined to be 4.2 ± 2.8 ng/L (THg) and 0.25 ± 0.13 ng/L (MeHg) in water from the ECS. The level of Hg in the ECS occupied the higher rank among the marginal seas, thus indicating significant Hg contamination in this system. Both the THg and MeHg presented complicated spatial distribution patterns in the ECS, with high concentration areas located in both the nearshore and offshore areas. Statistical analyses suggest that temperature (T) and Hg in sediment may be the controlling factors for THg distribution, while dissolved organic matter (DOM), T, and MeHg in the sediment may be the controlling factors for MeHg distribution in the seawater of the ECS. The relative importance of these environmental factors in Hg distribution depends on the water depth. T-salinity (S) diagram analyses showed that water mass mixing may also play an important role in controlling THg and MeHg distribution in the coastal ECS.
اظهر المزيد [+] اقل [-]DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy النص الكامل
2020
Yirong, Cao | Shengchen, Wang | Jiaxin, Sun | Shuting, Wang | Ziwei, Zhang
Di (2-ethylhexyl) phthalate (DEHP), a widely spreading environmental endocrine disruptor, has been confirmed to adversely affect the development of animals and humans. The formation of neutrophil extracellular traps (NETs) termed NETosis, is a recently identified antimicrobial mechanism for neutrophils. Though previous researches have investigated inescapable role of the immunotoxicity in DEHP-exposed model, relatively little is known about the effect of DEHP on NETs. In this study, carp peripheral blood neutrophils were treated with 40 and 200 μmol/L DEHP to investigate the underlying mechanisms of DEHP-induced NETs formation. Through the morphological observation of NETs and quantitative analysis of extracellular DNA, we found that DEHP exposure induced NETs formation. Moreover, our results proved that DEHP could increase reactive oxygen species (ROS) levels, decrease the expression of the anti-autophagy factor (mTOR) and the anti-apoptosis gene Bcl-2, and increase the expression of pro-autophagy genes (Dynein, Beclin-1 and LC3B) and the pro-apoptosis factors (BAX, Fas, FasL, Caspase3, Caspase8, and Caspase9), thus promoting autophagy and apoptosis. These results indicate that DEHP-induced ROS burst stimulates NETs formation mediated by autophagy and increases apoptosis in carp neutrophils.
اظهر المزيد [+] اقل [-]Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species النص الكامل
2020
Lee, Hyesook | Hwang, Bo Hyun | Ji, Seon Yeong | Kim, Min Yeong | Kim, So Young | Park, Cheol | Hong, Su Hyun | Kim, Gi-Young | Song, Kyoung Seob | Hyun, Jin Won | Choi, Yung Hyun
Although several studies have linked PM₂.₅ (particulate matter with a diameter less than 2.5 μm) to ocular surface diseases such as keratitis and conjunctivitis, very few studies have previously addressed its effect on the retina. Therefore, the aim of this study was to evaluate the effect of PM₂.₅ on epithelial-mesenchymal transition (EMT), a process involved in disorders of the retinal pigment epithelial (RPE) on APRE-19 cells. PM₂.₅ changed the phenotype of RPE cells from epithelial to fibroblast-like mesenchymal, and increased cell migration. Exposure to PM₂.₅ markedly increased the expression of mesenchymal markers, but reduced the levels of epithelial markers. Moreover, PM₂.₅ promoted the phosphorylation of MAPKs and the expression of transforming growth factor-β (TGF-β)-mediated nuclear transcriptional factors. However, these PM₂.₅-mediated changes were completely reversed by LY2109761, a small molecule inhibitor of the TGF-β receptor type I/II kinases, and N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger. Interestingly, NAC, but not LY2109761, effectively restored the PM₂.₅-induced mitochondrial defects, including increased ROS, decreased mitochondrial activity, and mitochondrial membrane potential disruption. Collectively, our findings indicate that the TGF-β/Smad/ERK/p38 MAPK signaling pathway is activated downstream of cellular ROS during PM₂.₅-induced EMT. The present study provides the first evidence that EMT of RPE may be one of the mechanisms of PM₂.₅-induced retinal dysfunction.
اظهر المزيد [+] اقل [-]Bioremediation of diesel and gasoline-contaminated soil by co-vermicomposting amended with activated sludge: Diesel and gasoline degradation and kinetics النص الكامل
2020
Abdollahinejad, Behnaz | Pasalari, Hasan | Jafari, Ahmad Jonidi | Esrafili, Ali | Farzadkia, Mahdi
Present study aims to examine the efficiency of co-vermicomposting amended with activated sludge and E. fetida earthworm for bioremediation of diesel and gasoline from contaminated soil. The diesel and gasoline removal efficiency and degradation rates coefficients were estimated with gas chromatography (GC) analysis and first-order kinetics. The removal of gasoline and diesel in different co-vermicomposting processes with and without E. fetida ranged between 65-100% and 24.94–63.93%, respectively within 90- day experiment. Removal of gasoline and diesel increased in soil with addition of earthworm (E. fetida); higher degradation rate coefficients (k) were observed for co-vermicomposting with earthworm compared with co-vermicomposting processes. The highest k (0.014) for diesel degradation was estimated for microcosm reactor 4 (R4), where high numbers of E. fetida accelerate the less biodegradable organic contaminant from the soil matrices. The reasonable survival rates of earthworms in exposure to high concentration of petroleum-derivatives contaminated soils indicated increased activity of ligninolytic diesel–degrading earthworms and microorganisms. Therefore, co-vermicomposting amended with activated sludge is suggested as feasible and promising technologies for bioremediation of high content of organic contaminants from the soil matrices.
اظهر المزيد [+] اقل [-]Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions النص الكامل
2020
Masbou, J. | Viers, J. | Grande, J.-A. | Freydier, R. | Zouiten, C. | Seyler, P. | Pokrovsky, O.S. | Behra, P. | Dubreuil, B. | de la Torre, M.-L.
Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions النص الكامل
2020
Masbou, J. | Viers, J. | Grande, J.-A. | Freydier, R. | Zouiten, C. | Seyler, P. | Pokrovsky, O.S. | Behra, P. | Dubreuil, B. | de la Torre, M.-L.
Copper export and mobility in acid mine drainage are difficult to understand with conventional approaches. Within this context, Cu isotopes could be a powerful tool and here we have examined the relative abundance of dissolved (<0.22 μm) Cu isotopes (δ⁶⁵Cu) in the Meca River which is an outlet of the Tharsis mine, one of the largest abandoned mines of the Iberian Pyrite Belt, Spain. We followed the chemical and isotopic composition of the upstream and downstream points of the catchment during a 24-h diel cycle. Additional δ⁶⁵Cu values were obtained from the tributary stream, suspended matter (>0.22 μm) and bed sediments samples. Our goals were to 1) assess Cu sources variability at the upstream point under contrasted hydrological conditions and 2) investigate the conservative vs. non conservative Cu behavior along a stream. Average δ⁶⁵Cu values varied from −0.47 to −0.08‰ (n = 9) upstream and from −0.63 to −0.31‰ downstream (n = 7) demonstrating that Cu isotopes are heterogeneous over the diel cycle and along the Meca River. During dry conditions, at the upstream point of the Meca River the Cu isotopic composition was heavier which is in agreement with the preferential release of heavy isotopes during the oxidative dissolution of primary sulfides. The more negative values obtained during high water flow are explained by the contribution of soil and waste deposit weathering. Finally, a comparison of upstream vs. downstream Cu isotope composition is consistent with a conservative behavior of Cu, and isotope mass balance calculations estimate that 87% of dissolved Cu detected downstream originate from the Tharsis mine outlet. These interpretations were supported by thermodynamic modelling and sediment characterization data (X-ray diffraction, Raman Spectroscopy). Overall, based on contrasted hydrological conditions (dry vs flooded), and taking the advantage of isotope insensitivity to dilution, the present work demonstrates the efficiency of using the Cu isotopes approach for tracing sources and processes in the AMD regions.
اظهر المزيد [+] اقل [-]Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions النص الكامل
2020
Masbou, J. | Viers, Jérôme | Grande, Jose Antonio | Freydier, R. | Zouiten, Cyril | Seyler, Patrick | Pokrovsky, O.S., S | Behra, Philippe | Dubreuil, Brigitte | de La Torre, M.L. | Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS) ; École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | Universidad de Huelva | Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Tomsk State University [Tomsk] | Laboratoire de Chimie Agro-Industrielle (LCA) ; Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques (ENSIACET) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | his work was supported by the EC2CO program of the INSU/CNRS institution and by the European Union for co-funding SOIL TAKE CARE SOE1/P4/F0023 through the European Regional Development Fund (ERDF), under the Interreg SUDOE Program. This work was also partly supported by the EQUIPEX CRITEX programme (grant no. ANR-11-EQPX-0011, Pls. J. Gaillardet and L. Longuevergne) | ANR-11-EQPX-0011,CRITEX,Parc national d'équipements innovants pour l'étude spatiale et temporelle de la Zone Critique des Bassins Versants(2011)
International audience | Copper export and mobility in acid mine drainage are difficult to understand with conventional approaches. Within this context, Cu isotopes could be a powerful tool and here we have examined the relative abundance of dissolved (<0.22 μm) Cu isotopes (δ65Cu) in the Meca River which is an outlet of the Tharsis mine, one of the largest abandoned mines of the Iberian Pyrite Belt, Spain. We followed the chemical and isotopic composition of the upstream and downstream points of the catchment during a 24-h diel cycle. Additional δ65Cu values were obtained from the tributary stream, suspended matter (>0.22 μm) and bed sediments samples. Our goals were to 1) assess Cu sources variability at the upstream point under contrasted hydrological conditions and 2) investigate the conservative vs. non conservative Cu behavior along a stream. Average δ65Cu values varied from -0.47 to -0.08‰ (n = 9) upstream and from -0.63 to -0.31‰ downstream (n = 7) demonstrating that Cu isotopes are heterogeneous over the diel cycle and along the Meca River. During dry conditions, at the upstream point of the Meca River the Cu isotopic composition was heavier which is in agreement with the preferential release of heavy isotopes during the oxidative dissolution of primary sulfides. The more negative values obtained during high water flow are explained by the contribution of soil and waste deposit weathering. Finally, a comparison of upstream vs. downstream Cu isotope composition is consistent with a conservative behavior of Cu, and isotope mass balance calculations estimate that 87% of dissolved Cu detected downstream originate from the Tharsis mine outlet. These interpretations were supported by thermodynamic modelling and sediment characterization data (X-ray diffraction, Raman Spectroscopy). Overall, based on contrasted hydrological conditions (dry vs flooded), and taking the advantage of isotope insensitivity to dilution, the present work demonstrates the efficiency of using the Cu isotopes approach for tracing sources and processes in the AMD regions.
اظهر المزيد [+] اقل [-]Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders النص الكامل
2020
Chen, Jianfei | Tong, Tianli | Jiang, Xinshu | Xie, Shuguang
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH₄⁺–N removal. High removal efficiencies (26.42–84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement.Main findings of the work.This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
اظهر المزيد [+] اقل [-]