خيارات البحث
النتائج 1051 - 1060 من 4,241
Interannual variability of soft-bottom macrobenthic communities of the NW Gulf of Mexico in relationship to the Deepwater Horizon oil spill
2017
Salcedo, Diana L. | Soto, Luis A. | Estradas-Romero, Alejandro | Botello, Alfonso V.
A 3-year research program was undertaken to assess potential environmental disturbance caused by the Deepwater Horizon oil spill to the soft-bottom macrobenthic communities within Mexican waters of the northwestern Gulf of Mexico. Community properties and temporal/spatial variability were analyzed besides toxicant parameters such as hydrocarbons and trace-metals. Overall infaunal density increased, taxa proportion changed, and small-size opportunistic organisms prevailed throughout the study. Annual abundance-biomass comparison (ABC) curves revealed progressive stress scenarios from moderate to severe. Concentrations of vanadium, nickel, cobalt, PAHs and AHs increased gradually over time. However, low correlations between benthic density and biogeochemical variables were determined. Initially, sedimentary properties were the main drivers of benthic community structure; subsequently, nickel, vanadium and PAHs, indicative of anthropogenic effect, were highlighted. Interannual variability in the macroinfauna was attributed to the synergy of several environmental factors. Undoubtedly, compounds derived from fossil fuels had a significant disturbance role, but their source remains uncertain.
اظهر المزيد [+] اقل [-]Microplastics elutriation system. Part A: Numerical modeling
2017
Kedzierski, Mikaël | Le Tilly, Véronique | Bourseau, Patrick | Bellegou, Hervé | César, Guy | Sire, Olivier | Bruzaud, Stéphane
The elutriation process has shown its efficiency to extract microplastics from sand and began to spread in the scientific community. This extraction technic requires knowing with accuracy the extraction velocities of particles. This study aims to test whether numerical modeling could help to calculate these velocities. From hydrodynamic equations, a numerical model has been developed and the outputs are compared to experimental extraction data. The results show, for the calculated velocities, the experimental plastic extraction yields will be higher than 90% for <10% of sand contamination. The model also allows determining that, with the actual protocol, the maximum plastic density which can be extracted is about 1450kg·m−3 whereas the detrimental resuspension, which may occur during the column filling step, is highlighted. From model calculations, it arises that changes in the column dimensioning and the protocol operations need to be considered.
اظهر المزيد [+] اقل [-]A mycological baseline study based on a multidisciplinary approach in a coastal area affected by contaminated torrent input
2017
Fungi include a vast group of eukaryotic organisms able to colonise different natural, anthropised and extreme environments, including marine areas contaminated by metals. The present study aims to give a first multidisciplinary characterisation of marine bottom sediments contaminated by metals (Cd, Co, Cr, Cu, Ni, and Zn), originating in the water leakage from an abandoned Fe-Cu sulphide mine (Libiola, north-western Italy), and evaluate how the chemical and physical parameters of water and sediments may affect the benthic fungal communities. Our preliminary results showed the high mycodiversity of the marine sediments studied (13 genera and 23 species of marine fungi isolated), and the great physiological adaptability that this mycobiota evolved in reaction to the effects of the ecotoxic bottom sediment contamination, and associated changes in the seawater parameters.
اظهر المزيد [+] اقل [-]Aquatic ecotoxicological models and their applicability in Arctic regions
2017
Dose-response modeling is one of the most important steps of ecological risk assessment. It requires concentration-effects relationships for the species under consideration. There are very limited studies and experimental data available for the Arctic aquatic species. Lack of toxicity data hinders obtaining dose-response relationships for lethal (LC50 values), sub-lethal and carcinogenic effects. Gaps in toxicity data could be filled using a variety of in-silico ecotoxicological methods. This paper reviews the suitability of such methods for the Arctic scenario. Mechanistic approaches like toxicokinetic and toxicodynamic analysis are found to be better suited for interspecies extrapolation than statistical methods, such as Quantitative Structure-Activity Relationships/Quantitative Structure Activity-Activity Relationship, ICE, and other empirical models, such as Haber's law and Ostwald's equation. A novel approach is proposed where the effects of the toxicant exposure are quantified based on the probability of cellular damage and metabolites interactions. This approach recommends modeling cellular damage using a toxicodynamic model and physiology or metabolites interactions using a toxicokinetic model. Together, these models provide more reliable estimates of toxicity in the Arctic aquatic species, which will assist in conducting ecological risk assessment of Arctic environment.
اظهر المزيد [+] اقل [-]Study of continuous air pollution in winter over Wuhan based on ground-based and satellite observations
2017
A comprehensive research was conducted to analyze the formation and characteristics of continuous air pollution during winter in Wuhan, China, based on ground and satellite joint observation. The effect of meteorological conditions, the source of pollutants and the optical properties of aerosols were investigated. The pressure and the accumulation of pollutants were the two main causes of continuous haze formation. The continuous cold high-pressure system, accompanied by a stable inversion layer, limited the contaminants below the height of 700 m on 15–23 January. The height of the boundary layer was below 1 000 m, based on the lidar observation. Meteorological condition contributes to the accumulation of pollutants. Then, dust transport and local anthropogenic pollutant emissions promoted the accumulation of pollutants, resulting in continuous haze pollution. Different from the heavy pollution (the 24 h-average PM2.5 is more than 200.0 μgm−3) over the Beijing-Tianjin-Hebei region, the contaminants in the Wuhan area were mainly primary pollutants, including airborne dust and anthropogenic pollutants. Moreover, a photochemical reaction was observed. However, the extent of secondary pollution formation was not high during haze pollution. Result in the particle size distribution confirmed the process of dust transport. Fine-mode and coarse-mode particles sometimes appear in the haze pollution in winter. According to the satellite data, the AOD maintained a large level of approximately 0.8 during the pollution. The aerosol extinction ability was relatively strong during the pollution period, whether aerosol is absorbed or a scattering effect dominated. In this study, the formation process of haze pollution revealed which can be used to validate air-quality models over the Wuhan region and can also provide guidance for government for the prevention work of haze pollution over Central China.
اظهر المزيد [+] اقل [-]Resource recovery of Eichhornia crassipes as oil superabsorbent
2017
The elastic cellulose-based aerogels (CBAs) with highly porous (99.56%) and low-density (0.0065gcm−1) were prepared using Eichhornia crassipes as cellulose source and polyvinyl alcohol directly as cross-linker via a facile and environment-friendly process. The prepared CBAs exhibited excellent oil/solvent sorption capacities (60.33–152.21gg−1), super-hydrophobicity (water contact angle of 156.7°) as well as remarkable reusability. More importantly, the absorbed oil could be quickly recovered by simple squeezing without significantly structure damage (at least 16 times). All these merits make CBAs very promising materials for oil spillage cleaning.
اظهر المزيد [+] اقل [-]Particulate waste outflow from fish-farming cages. How much is uneaten feed?
2017
Particulate wastes drive benthic organic enrichment from cage fish farming. Differentiation between faeces and uneaten feed estimates at cage level are of great value to both economize the feeding process and reduce waste. This study estimates the particulate waste outflowing cages at different depths and orientations, and the wasted feed component by combining in situ measurements and modelling. Particulate matter flux (PMF) was greater vertically through the cage bottoms (60.89%), but lateral outflow was also substantial (39.11%). PMF occurs all around the cages, and the influence of the mainstream current was low. Wasted feed was greatly variable, reaching high values (about 50% of supplied feed. The self-application of feed wastage monitoring and estimates by fish farmers is recommended to improve sustainability.
اظهر المزيد [+] اقل [-]Preventable fine sediment export from the Burdekin River catchment reduces coastal seagrass abundance and increases dugong mortality within the Townsville region of the Great Barrier Reef, Australia
2017
Wooldridge, Scott A
The coastal seagrass meadows in the Townsville region of the Great Barrier Reef are crucial seagrass foraging habitat for endangered dugong populations. Deteriorating coastal water quality and in situ light levels reduce the extent of these meadows, particularly in years with significant terrestrial runoff from the nearby Burdekin River catchment. However, uncertainty surrounds the impact of variable seagrass abundance on dugong carrying capacity. Here, I demonstrate that a power-law relationship with exponent value of −1 (R2~0.87) links mortality data with predicted changes in annual above ground seagrass biomass. This relationship indicates that the dugong carrying capacity of the region is tightly coupled to the biomass of seagrass available for metabolism. Thus, mortality rates increase precipitously following large flood events with a response lag of <12-months. The management implications of this result are discussed in terms of climate scenarios that indicate an increased future likelihood of extreme flood events.
اظهر المزيد [+] اقل [-]External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies
2017
Bryhn, Andreas C. | Dimberg, Peter H | Bergström, Lena | Fredriksson, Ronny E | Mattila, Johanna | Bergström, Ulf
Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following ice-break and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective.
اظهر المزيد [+] اقل [-]Genetic diversity of the giant tiger prawn Penaeus monodon in relation to trace metal pollution at the Tanzanian coast
2017
Rumisha, Cyrus | Leermakers, Martine | Elskens, Marc | Mdegela, Robinson H. | Gwakisa, Paul | Kochzius, Marc
The genetic diversity of giant tiger prawns in relation to trace metals (TMs) pollution was analysed using 159 individuals from eight sites at the Tanzanian coast. The seven microsatellites analysed showed high degree of polymorphism (4–44 alleles). The measured genetic diversity (Ho=0.592±0.047) was comparable to that of populations in the Western Indian Ocean. Apart from that, correlation analysis revealed significant negative associations between genetic diversity and TMs pollution (p<0.05), supporting the genetic erosion hypothesis. Limited gene flow was indicated by a significant genetic differentiation (FST=0.059, p<0.05). The Mantel test rejected the isolation-by-distance hypothesis, but revealed that gene flow along the Tanzanian coast is limited by TMs pollution. This suggests that TMs affect larvae settlement and it may account for the measured deficiency of heterozygosity. This calls for strengthened pollution control measures in order to conserve this commercially important species.
اظهر المزيد [+] اقل [-]