خيارات البحث
النتائج 1051 - 1060 من 6,560
Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol النص الكامل
2020
Sun, Kai | Cheng, Xing | Yu, Jialin | Chen, Luojian | Wei, Jiajun | Chen, Wenjun | Wang, Jun | Li, Shunyao | Liu, Qingzhu | Si, Youbin
Estrogens, which are extensive in the eco-environments, are a category of high-toxic emerging contaminants that induce metabolic disorders and even carcinogenic risks in wildlife and humans. Here we investigate whether fungus-secreted laccase can be used as a green catalyst to eliminate a representative estrogen, 17β-estradiol (E2). A white-rot fungus Trametes hirsuta La-7 with high laccase-productivity, was isolated from pig manure-contaminated soil. Extracellular laccase activity expressed by strain La-7 was 65.4 U·mL⁻¹ for a 3 d inoculation under the optimal fermentation parameters. The concentrated-crude laccase from Trametes hirsuta La-7 (CC-ThLac) was capable of effectively metabolizing E2 at pH 4–6, and the apparent pseudo first-order reaction rate constant and half-life values were respectively 0.027–0.055 min⁻¹ and 25.86–12.67 min (R² > 0.98). The mass measurement of high-resolution mass spectrometry in combination with ¹³C-isotope labeling identified that the main by-products of E2 metabolism were dimers, trimers, and tetramers, which are consistent with radical-driven C–C and/or C–O–C covalent coupling pathway, involving the initial enzymatic production of phenoxy radical intermediates and then the successive oxidative-oligomerization of radical intermediates. The formation of oligomers dramatically reduced the estrogenic activity of E2. Additionally, CC-ThLac also exhibited high-efficiency metabolism capability toward E2 in the natural water and pig manure, with more than 94.4% and 91.0% of E2 having been metabolized, respectively. These findings provide a broad prospect for the clean biotechnological applications of Trametes hirsuta La-7 in estrogen-contaminated ecosystems.
اظهر المزيد [+] اقل [-]Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling النص الكامل
2020
Hu, Zhao | Hou, Jie | Zhu, Ya | Lin, Daohui
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO₂ NPs (nTiO₂) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO₂, and the toxicities of three nTiO₂ forms were largely comparable. The nTiO₂ exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO₂ exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO₂, and add new knowledge on the long-term impact of soil nTiO₂ contamination.
اظهر المزيد [+] اقل [-]Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing النص الكامل
2020
Kant, Yogesh | Shaik, Darga Saheb | Mitra, Debashis | Chandola, H.C. | Suresh Babu, S. | Chauhan, Prakash
Continuous measurements of Black Carbon (BC) aerosol mass concentrations were carried at Dehradun (30.33°N, 78.04°E, 700 m amsl), a semi-urban site in the foothills of north-westHimalayas, India during January 2011–December 2017. We reported both the BC seasonal variations as well as mass concentrations from fossil fuel combustion (BCff) and biomass burning (BCbb) sources. Annual mean BC exhibited a strong seasonal variability with maxima during winter (4.86 ± 0.78 μg m⁻³) followed by autumn (4.18 ± 0.54 μg m⁻³), spring (3.93 ± 0.75 μg m⁻³) and minima during summer (2.41 ± 0.66 μg m⁻³). Annual averaged BC mass concentrations were 3.85 ± 1.16 μg m⁻³ varying from 3.29 to 4.37 μg m⁻³ whereas BCff and BCbb ranged from 0.11 to 7.12 μg m⁻³ and 0.13–3.6 μg m⁻³. The percentage contributions from BCff and BCbb to total BC are 66% and 34% respectively, indicating relatively higher contribution from biomass burning as compared to other locations in India. This is explained using potential source contribution function (PSCF) and concentration weighted trajectories (CWT) analysis which reveals the potential sources of BC originating from the north-west and eastern parts of IGP and the western part of the Himalayas that are mostly crop residue burning and forest fire regions in India. The annual mean ARF at top-of-atmosphere (TOA), at surface (SUR), and within the atmosphere (ATM) were found to be −14.84 Wm⁻², −43.41 Wm⁻², and +28.57 Wm⁻² respectively. To understand the impact of columnar aerosol burden on ARF, the radiative forcing efficiency (ARFE) was estimated and averaged values were −31.81, −91.63 and 59.82 Wm⁻² τ⁻¹ for TOA, SUR and ATM respectively. The high ARFE within the atmosphere indicates the dominance of absorbing aerosol (BC and dust) over Northwest Himalayas.
اظهر المزيد [+] اقل [-]Are biodegradable plastics a promising solution to solve the global plastic pollution? النص الكامل
2020
Shen, Maocai | Song, Biao | Zeng, Guangming | Zhang, Yaxin | Huang, Wei | Wen, Xiaofeng | Tang, Wangwang
A large amount of plastic waste has been discharged into the environment worldwide, which causes the current white pollution problem. The accumulated waste plastics in the environment can be furtherly degraded into small pieces such microplastics and nanoplastics through weathering, which will do more harm to the environment and humans than large plastics. Therefore, plastic production and disposal are needed to be considered. Biodegradable plastics (BPs) have become the focus of recent research due to their potential biodegradability and harmlessness, which would be the most effective approach to manage the issue of plastic waste environmental accumulation. However, in the long run, it is uncertain whether BPs can be a promising solution to waste disposal and global plastic pollution. Consequently, both sides of the dispute are discussed in this paper. At present, most conventional plastics can not be replaced by theses BPs. Biodegradation of BPs needs certain environmental conditions, which are not always reliable in the environment. Additionally, changes in human behavioral awareness will also affect the development and application of BPs. BPs should not be considered as a technical solution, thus excusing our environmental responsibility, because littering does not change with the promotion of an effective technology. As such, the conclusion is that BPs may be a part of the solution. The effectiveness in providing environmentally solutions for plastic waste management depends on the combination of affordable waste classification technologies and investment in organic waste treatment facilities. Therefore, there is still a long way to go to solve the global plastic pollution through BPs.
اظهر المزيد [+] اقل [-]Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China النص الكامل
2020
Zhang, Bing | Zhang, Qian-Qian | Zhang, Shao-Xuan | Xing, Cheng | Ying, Guang-Guo
Pesticides are widely and intensively used in the world for crops protection. High pesticide loadings can potentially pollute the water resource. However, little is known about the usage, environmental emission and fate of pesticides in river basins. Here, we firstly established a pesticide emission estimation method, and investigated the environmental fate of three commonly used pesticides (chlorpyrifos, triazophos, and isoprothiolane) in Dongjiang River basin, southern China using mathematical modelling approach in combination with field monitoring. The distributed hydrological model SWAT (Soil and Water Assessment Tool) was applied to model the emission of the target pesticides from farmland to stream water, and their fate in the basin. A satisfactory model calibration for flow and suspended sediment was obtained based on eight-year observation data of four hydrological monitoring stations in Dongjiang River basin. The differences between the simulation and observation of pesticides were almost within an order of magnitude, including more than 53% differences within 0.5 order of magnitude. In the river basin, 78860 kg of chlorpyrifos, 54990 kg of triazophos and 35320 kg of isoprothiolane were sprayed onto the crops, the estimated annual emissions of the basin come up to 1801 kg, 3779 kg, and 2330 kg under the conditions of rainfall, surface runoff and percolation. After a series of environmental processes including settlement and degradation within the channels, the predicted export masses for chlorpyrifos, triazophos and isoprothiolane were reduced to 266 kg, 1858 kg, 1350 kg, respectively. Successful prediction suggests that the reliable estimation method combing the SWAT modelling can help us understand the source, concentration levels and fate of pesticides in river basin in different scales. Combing the method of emission and fate modelling method we proposed, countries and regions lacking pesticide-application database can facilitate better management of pesticides.
اظهر المزيد [+] اقل [-]Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors النص الكامل
2020
Shang, Ziyin | Abdalla, Mohamed | Kuhnert, Matthias | Albanito, Fabrizio | Zhou, Feng | Xia, Longlong | Smith, Pete
Nitrous oxide emission factors (N₂O-EF, percentage of N₂O–N emissions arising from applied fertilizer N) for cropland emission inventories can vary with agricultural management, soil properties and climate conditions. Establishing a regionally-specific EF usually requires the measurement of a whole year of N₂O emissions, whereas most studies measure N₂O emissions only during the crop growing season, neglecting emissions during non-growing periods. However, the difference in N₂O-EF (ΔEF) estimated using measurements over a whole year (EFwy) and those based on measurement only during the crop-growing season (EFgₛ) has received little attention. Here, we selected 21 studies including both the whole-year and growing-season N₂O emissions under control and fertilizer treatments, to obtain 123 ΔEFs from various agroecosystems globally. Using these data, we conducted a meta-analysis of the ΔEFs by bootstrapping resampling to assess the magnitude of differences in response to management-related and environmental factors. The results revealed that, as expected, the EFwy was significantly greater than the EFgₛ for most crop types. Vegetables showed the largest ΔEF (0.19%) among all crops (0.07%), followed by paddy rice (0.11%). A higher ΔEF was also identified in areas with rainfall ≥600 mm yr⁻¹, soil with organic carbon ≥1.3% and acidic soils. Moreover, fertilizer type, residue management, irrigation regime and duration of the non-growing season were other crucial factors controlling the magnitude of the ΔEFs. We also found that neglecting emissions from the non-growing season may underestimate the N₂O-EF by 30% for paddy fields, almost three times that for non-vegetable upland crops. This study highlights the importance of the inclusion of the non-growing season in the measurements of N₂O fluxes, the compilation of national inventories and the design of mitigation strategies.
اظهر المزيد [+] اقل [-]Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation النص الكامل
2020
Wang, Gang | Han, Neng | Liu, Li | Ke, Zhengchen | Li, Baoguo | Chen, Guowei
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 10⁶ electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
اظهر المزيد [+] اقل [-]Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China النص الكامل
2020
Peng, Kai | Qin, Boqiang | Cai, Yongjiu | Gong, Zhijun | Jeppesen, Erik
Internal release of nutrients is an important contributor to the nutrient dynamics in shallow eutrophic lakes. Zoobenthic organisms may contribute to this release by excreting nutrients to the overlaying water. Based on experiments and using results from previous experimental studies as well as field monitoring density data from 2007 to 2017, we calculated the annual and seasonal nutrient excretions of the two most common macroinvertebrates (Corbicula fluminea and Limnodrilus hoffmeisteri) in Lake Taihu, China. We compared these rates with the concentrations of NH₄–N, total nitrogen (TN), PO₄–P and total phosphorus (TP) in the lake water as well as with previous results of release rates from undisturbed sediments collected in the lake. The spatial distribution of nutrient excretion by the two invertebrate species varied markedly among sites and years. Regression analyses revealed significant relationships between total nutrient excretions by these two species and the concentrations of NH₄–N, TN, PO₄–P and TP in the lake, but with seasonal differences. The relationship was overall strongest in winter, followed by spring, and weakest in summer and autumn. The flux of NH₄–N and PO₄–P released by the two macroinvertebrate species were equivalent to as much as 50% and 66%, respectively, of the sediment release recorded in lab experiments under undisturbed conditions; however, the percentages would be somewhat lower under field conditions where the sediment is subjected to frequent wind-induced resuspension and fish disturbance, enhancing the release rates. The release declined during the study period due to a reduction in the density of macroinvertebrates, perhaps indicating increasing stocking of fish since 2007. Our results indicate that benthic invertebrates are important contributor to the internal loading in shallow eutrophic lakes.
اظهر المزيد [+] اقل [-]Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy النص الكامل
2020
Jin, Zhongmin | Xie, Lin | Zhang, Tuo | Liu, Lijie | Black, Thom | Jones, K. C. (Kevin C.) | Zhang, Hao | Wang, Xinzi | Jin, Naifu | Zhang, Dayi
Fungi-associated phytoremediation is an environmentally friendly and cost-efficient approach to remove potential toxic elements (PTEs) from contaminated soils. Many fungal strains have been reported to possess PTE-biosorption behaviour which benefits phytoremediation performance. Nevertheless, most studies are limited in rich or defined medium, far away from the real-world scenarios where nutrients are deficient. Understanding fungal PTE-biosorption performance and influential factors in soil environment can expand their application potential and is urgently needed. This study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) coupled with phenotypic microarrays to study the biospectral alterations of a fungal strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated with 48 different carbon sources and the biosorption efficiency achieved >90%. As the first study using spectroscopic tools to analyse PTE-biosorption by fungal cells in a high-throughput manner, our results indicated that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm⁻¹, 1456 cm⁻¹ and 1396 cm⁻¹) were significantly correlated with Cd biosorption, suggesting the cell wall components of S. chinense QD10 as the primary interactive targets. In contrast, there was no any spectral biomarker associated with Pb biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd biosorption by S. chinense QD10 followed discriminating mechanisms, specific adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. This work lends new insights into the mechanisms of PTE-biosorption via IR spectrochemical tools, which provide more comprehensive clues for biosorption behaviour with a nondestructive and high-throughput manner solving the traditional technical barrier regarding the real-world scenarios.
اظهر المزيد [+] اقل [-]A study on the mixture repairing effect of biochar and nano iron oxide on toxicity of Cd toward muskmelon النص الكامل
2020
Zou, Zhengkang | Wang, Yunqiang | Huang, Jia-Li | Lei, Zhen | Wan, Fengting | Dai, Zhaoyi | Yi, Licong | Li, Junli
Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-Fe₂O₃, γ-Fe₂O₃, Fe₃O₄) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil. The antioxidant system, chlorophyll, soluble protein, other physiological indexes of muskmelon leaves and the distribution of Cd in matrix soil, leaves and fruit were detected. The results showed that Cd was readily absorbed by plants and caused oxidative stress on plants, while biochar, α-Fe₂O₃ nanoparticles (NPs) and their mixture group (BFe1 group) could significantly improve it. Specifically, the three treatments reduced the Cd content of the fruit by 19.51–78.86%, reduced the Cd content of leaves by 15.44–36.23% and 22.36–31.77% in weeks 3 and 5, respectively. For the activity of enzymes, three treatments decreased superoxide dismutase (SOD) activity and catalase (CAT) activity by 3.41–38.57% and 24.27–30.33% in week 7, respectively. So BFe1 group application immobilized Cd in soil and reduced Cd partitioning in the aboveground tissues. Overall the combination of biochar and α-Fe₂O₃ NPs can alleviate Cd toxicity in muskmelon and can protect human beings from Cd exposure.
اظهر المزيد [+] اقل [-]