خيارات البحث
النتائج 1061 - 1070 من 1,506
Comparison of Fecal Coliform Before and After Wastewater Treatment Facility: a Case Study near a Coastal Town in the Southeastern USA
2012
Bhat, Shirish | Danek, L. J.
A central wastewater treatment facility was built in 1997 for the town of Suwannee that eliminated 850 inadequately operating on-site sewage treatment and disposal systems. During a study in 1989–1990, Salmonella were detected in Suwannee River water samples upstream and downstream of the town of Suwannee. This study presents the findings of fecal coliform distribution between the years 1996 and 2009 in canals and the main stem of Suwannee River near the town of Suwannee, a coastal area in southeastern USA. Fecal coliforms were measured and assessed to evaluate the water quality before and after the installation of the central wastewater treatment facility. In the canals nearby the town of Suwannee, significant differences in fecal coliform concentrations were detected between the samples collected before and after the operation of the central wastewater treatment facility. Average fecal coliform of 537 most probable number (MPN)/100 ml in the canals in 1996 was reduced to 218 MPN/100 ml after the operation of wastewater treatment facility. The fecal coliform levels in canals decreased significantly in the last 13 years. Even though the average fecal coliform levels in the river was reduced from 170 to 86 MPN/100 ml before and after the installation of the wastewater treatment facility, respectively, the difference was not statistically significant.
اظهر المزيد [+] اقل [-]Methylene Blue Degradation by Sphingomonas paucimobilis under Aerobic Conditions
2012
Che Noraini, Che Hasnam | Morad, Norhashimah | Norli, Ismail | Teng, Tjoon Tow | Ogugbue, Chimezie Jason
The presence of synthetic dyes in industrial wastewaters may create serious environmental problems due to their mutagenicity and toxicity to aquatic life and humans. In this study, the decolourization and degradation of methylene blue (MB) by a Sphingomonas paucimobilis strain isolated from industrial wastewater was investigated under aerobic conditions. Decolourization extent of MB in medium was over 85 % when the bacterium was grown on a high concentration of the dye (1,000 mg/L) after a retention time of 5 days, while reduction in COD was 92.99 % suggesting mineralization of dyes as a result of microbial activities. The bacterium retained decolourizing activity over a wide range of pH (2–10), with peak activity obtained at pH 9. Analysis of samples extracted from decolourized culture flasks at pH 9 using UV–visible and Fourier transform infrared (FTIR) spectroscopy confirmed that the mechanism of colour removal was due to biodegradation rather than adsorption of dye on cells. Scanning and transmission electron microscopy revealed the secretion of exopolysaccharides (EPS) by S. paucimobilis cells on exposure to MB—a probable physiological defence mechanism to ensure controlled diffusion of dye molecules into cellular structures. Biokinetic coefficients, namely, growth yield, Y; specific biomass decay, K d; maximum specific substrate rate, k; saturation constant for substrate, K ₛ; and maximum specific biomass growth rate, μ ₘₐₓ, were determined by the Monod type kinetic equation. Results indicate that S. paucimobilis holds a promise as a good candidate for the biological treatment of industrial effluent containing high concentrations of synthetic dyes.
اظهر المزيد [+] اقل [-]Analysis of Acid Alizarin Violet N Dye Removal Using Sugarcane Bagasse as Adsorbent
2012
Mitter, Eduardo Kovalski | dos Santos, Graziely Cristina | de Almeida, Érica Janaína Rodrigues | Morão, Luana Galvão | Rodrigues, Heide Dayane Prates | Corso, Carlos Renato
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL−1. Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.
اظهر المزيد [+] اقل [-]Insights into Human Impacts on Streams from Tolerance Profiles of Macroinvertebrate Assemblages
2012
Chessman, Bruce C. | McEvoy, Paul K.
We present the concept of assemblage tolerance profiles (ATPs) as an aid to freshwater bioassessment, and illustrate it with a practical example. An ATP describes the proportion of taxa in an observed assemblage that is estimated to tolerate each level of a specific stressor within a defined range. We used an extensive compilation of biomonitoring field data to estimate the lower tolerances for pH and dissolved oxygen (DO) of common families of macroinvertebrates in rivers of south-eastern Australia. These limits were then used to establish ATPs for macroinvertebrate assemblages at 30 sites across six river systems with varying levels of exposure to drainage from disused mines and discharges from sewage treatment plants. We hypothesised that sites with more exposure to mine drainage would have ATPs indicating greater tolerance of low pH, whereas sites with more exposure to sewage discharges would have ATPs indicating greater tolerance of low DO, and found that these hypotheses were confirmed for five of the six river systems. We suggest that stressor-specific ATPs, based on tolerances derived from either field distributions or laboratory tests, can help to verify or eliminate candidate causes of inferred human impacts on aquatic ecosystems.
اظهر المزيد [+] اقل [-]Haematite in Lateritic Soils Aids Groundwater Disinfection
2012
Flynn, Raymond | Taylor, Richard | Kulabako, Robinah | Miret-Gaspa, Mariona
Microbiologically contaminated water severely impacts public health in low-income countries, where treated water supplies are often inaccessible to much of the population. Groundwater represents a water source that commonly has better microbiological quality than surface water. A 2-month intensive flow and quality monitoring programme of a spring in a densely settled, unsewered parish of Kampala, Uganda, revealed the persistent presence of high chloride and nitrate concentrations that reflect intense loading of sewage in the spring’s catchment. Conversely, thermotolerant coliform bacteria counts in spring water samples remained very low outside of periods of intense rainfall. Laboratory investigations of mechanisms responsible for this behavior, achieved by injecting a pulse of H40/1 bacteriophage tracer into a column packed with locally derived granular laterite, resulted in near-total tracer adsorption. X-ray diffraction (XRD) analysis showed the laterite to consist predominantly of quartz and kaolinite, with minor amounts (<5%) of haematite. Batch studies comparing laterite adsorption capacity with a soil having comparable mineralogy, but with amorphous iron oxide rather than haematite, showed the laterite to have a significantly greater capacity to adsorb bacteriophage. Batch study results using pure haematite confirmed that its occurrence in laterite contributes substantially to micro-organism attenuation observed and serves to protect underlying groundwater.
اظهر المزيد [+] اقل [-]Modelling Ammonia Losses After Field Application of Biogas Slurry in Energy Crop Rotations
2012
Gericke, Dirk | Bornemann, Lüder | Kage, Henning | Pacholski, Andreas
Over the past few years the number of biogas slurries, which are generally used as nitrogen fertilisers, have seen a steady increase in Germany. A mechanistic ammonia volatilisation model was developed to predict the ammonia losses of these slurries when applied to bare soil, maize, wheat and rye grass canopies. Data for model development were collected from several field measurements carried out at two locations in Northern Germany between the years of 2007 and 2008. Additionally, the behaviour of the slurries on and in the soil was investigated through the use of infiltration pot experiments. The model includes three main compartments: slurry, atmosphere and soil. The soil compartment model is relatively simple, as the slurry infiltration, nitrification and ploughing dislocation into the soil determined in the experiments showed quantitatively no significant differences between the tested slurries (mono-fermented, co-fermented and pig slurry) and soils (sand soil and loamy sand). Hence, instead of a complex soil model, stable reduction factors, as derived from the experiments, were implemented in the model. Simulated ammonia emissions were statistically compared (root mean square error (RMSE), modelling efficiency (ME), linear regression) to the observed emissions. All evaluations showed an acceptable model performance (RMSE = 1.80 kg N ha−1), although there were a few number of anomalies which could not be modelled in an adequate way. A model sensitivity analysis showed that temperature and slurry pH value are the main drivers of NH3 volatilization in the model. Following a change of +1°C or of +0.1 pH unit ammonia volatilization will increase by about 1% and 1.6% of the applied total ammoniacal nitrogen, respectively. We were able to show that a simple model approach could explain most factors of ammonia volatilization in biogas crop rotations.
اظهر المزيد [+] اقل [-]Dissolved Organic Carbon in Association with Water Soluble Nutrients and Metals in Soils from Lake Okeechobee Watershed, South Florida
2012
Yang, Y. G. | He, Z. L. | Wang, Y. B. | Liu, Y. L. | Liang, Z. B. | Fan, J. H. | Stoffella, P. J.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64–400 mg kg⁻¹ (69.30 mg kg⁻¹ in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg⁻¹ in average, respectively). Water soluble concentrations of N and P were in the range of 6.46–129 and 0.02–60.79 mg kg⁻¹, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68–12.52 (3.23 in average) and 3.19–2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of < method detection limit (MDL)–0.33, <MDL–0.53, 0.04–2.42, <MDL–0.71, and 0.09–1.13 mg kg⁻¹, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg⁻¹, respectively. The highest water soluble Co (0.10 mg kg⁻¹), Cr (0.26 mg kg⁻¹), Ni (0.31 mg kg⁻¹), and Zn (0.80 mg kg⁻¹) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg⁻¹) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.
اظهر المزيد [+] اقل [-]Atmospheric Deposition and Inorganic Nitrogen Flux
2012
Grigal, D. F.
Flux of dissolved inorganic nitrogen (DIN—primarily nitrate) from terrestrial ecosystems has been considered an important contributor to acidification of linked aquatic systems. The basis of this concern is the nitrogen (N) saturation hypothesis, positing that additions of N to terrestrial ecosystems in excess of biological requirements will result in DIN leaching. There is a consensus (implicit hypothesis) in the literature that atmospheric deposition of DIN in excess of a threshold of approximately 10 kg ha−1 year−1 leads to significant flux. Diverse data from USA indicate that DIN flux is highly variable both in space and time; the spatial uncertainty as measured by the pooled coefficient of variation is about 0.95, and the temporal (inter-year) uncertainty is about 0.75. The relationship between atmospheric deposition of DIN and annual flux is near-linear within the range of current deposition for US sites (≤8 kg ha−1 year−1 wet deposition). If wet and dry depositions are approximately equal, over 85 % of total DIN deposition is retained. This is nearly equal to the retention reported by the US Geological Survey National Water-Quality Assessment Program, which considered all nonpoint sources of N as inputs and both DIN and organic N as fluxes. Although input–output data have high uncertainty, the 85 % retention of atmospheric DIN by terrestrial watersheds casts doubt on its importance as a contributor to aquatic acidification. There is no obvious threshold of deposition leading to DIN leaching. The nitrogen saturation hypothesis may not fully explain N behavior in terrestrial ecosystems.
اظهر المزيد [+] اقل [-]Study of an Amphoteric Surfactant in a Soil Decontamination Process Using ANS Enhanced Fluorescence: Micellar Behavior and Dosing in Synthetic and Soil Solutions
2012
Castellazzi, Pascal | Mercier, Guy | Blais, Jean-François
Cocamidopropyl hydroxysultaine (CAS) has been used in a pilot plant study as a biodegradable surfactant for the extraction of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) from contaminated soils. The soil treatment has been done in flotation cells with a concentration of 0.20 g CAS L−1 in saline conditions (3 M NaCl) and using a pulp density of 20% (w/w). The process integrates the recirculation of the liquid phases separated from the soil by centrifugation or filtration. Thus, it was necessary to understand CAS-PAHs micellar behavior and to follow the behavior and the fate of the surfactant in the process. 1-8-anilino-naphthalene sulfonate (ANS) is used as a fluorophor compound in the ANS enhanced fluorescence technique. A three-dimensional model detailing the change in the micellar behavior at high NaCl concentration and at different pH has been established. Fluorescence results of centrifuged soil matrix containing CAS have been compared to the results from synthetic solutions assays. A method allowing an accurate titration of the CAS has been developed by using the exact same matrix of the soil as the tested samples for the preparation of the calibration curves. The study of the surfactant concentration in the process has been performed and allows the adjustment of the CAS concentration in the recirculated water.
اظهر المزيد [+] اقل [-]Vermicomposts and/or Arbuscular Mycorrhizal Fungal Inoculation in Relation to Metal Availability and Biochemical Quality of a Soil Contaminated with Heavy Metals
2012
Fernández-Gómez, Manuel J. | Quirantes, Mar | Vivas, Astrid | Nogales, Rogelio
A greenhouse pot experiment was conducted to investigate how the addition of two vermicomposts (commercial or produced from damaged greenhouse tomatoes) and/or inoculation with arbuscular mycorrhizal (AM) fungi affected availability and extractability of P, K and trace metals and biochemical quality of a soil contaminated with heavy metals. The pots were planted with Trifolium repens L., which was harvested 40 days after germination. Shoot and root dry matter of T. repens increased by the addition of both vermicomposts. P, K, Fe, Mn, Cu and Zn uptake by T. repens increased after vermicompost addition, whereas Ni, Pb and Cd concentrations were below the detection limit of the method used. After harvest, AB-DTPA-extractable Fe, Cu, Zn, Cd and Pb decreased in the organically amended soil, whereas AB-DTPA P, K and Mn increased. The addition of both vermicomposts, particularly which made from damaged tomatoes, boosted dehydrogenase, β-glucosidase and urease activities in the postharvest soil, implying a higher microbial functional diversity and biochemical quality in this amended soil. Although phosphatase activities were greater in the postharvest soils with higher AB-DTPA-extractable metals, the other enzyme activities were negatively affected. The inoculation of the soils with AM fungi had weak effects on plant growth, as well as on the availability and extractability of metals and enzyme activities compared to noninoculation. © Springer Science+Business Media B.V. 2011.
اظهر المزيد [+] اقل [-]