خيارات البحث
النتائج 1081 - 1090 من 1,966
Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties النص الكامل
2013
Boluwade, Alaba | Madramootoo, Chandra
Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km² area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed “Reference”. Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.
اظهر المزيد [+] اقل [-]Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source النص الكامل
2013
Yao, Hong | Lu, Jian | Wu, Jun | Lu, Zeyu | Wilson, P Chris | Shen, Yan
Adsorption of fluoroquinolone antibiotics using sludge-derived biochar made of various wastewater sludges was investigated. The sludge-derived biochar had relatively large Brunauer–Emmet–Teller specific surface areas that were beyond 110.0 m² g⁻¹ except the biochar made from the sludge collected from traditional sludge drying bed. The mesopore capacity was more than 57 % of the total pore capacity of all sludge-derived biochar except that made from the sludge dried through traditional sludge drying bed technique. High adsorption capacity of sludge-derived biochar was observed with a highest adsorption capacity of 19.80 ± 0.40 mg g⁻¹. High correlation between the adsorption capacity of sludge-derived biochar and the volatile content in the sludge source was observed. The Freundlich model (r ² values were in the range of 0.961–0.998) yielded the best fit with the experimental data of all the produced biochar. Fluoroquinolone antibiotics were readily adsorbed onto sludge-derived biochar. These findings suggest a new approach for the pollution control of fluoroquinolone antibiotics using low-cost sludge-derived biochar.
اظهر المزيد [+] اقل [-]Utilization of Passion Fruit Skin By-Product as Lead(II) Ion Biosorbent النص الكامل
2013
Gerola, Gislaine Passarella | Boas, Naiza Vilas | Caetano, Josiane | Tarley, César Ricardo Teixeira | Gonçalves, Affonso Celso Jr | Dragunski, Douglas Cardoso
In this study, residues of passion fruit skin were examined as biosorbent materials, evaluating their capacity to adsorb lead(II) ions in in natura skin (SK-N) and two modified skins, with NaOH (SK-S) and with NaOH and citric acid (SK-SCA). The biomass characterization was done through Fourier transform infrared spectroscopy which confirmed the chemical modification by a peak at 1,730 cm⁻¹. Also, scanning electron microscopy analyses were done, where the increase of residue roughness was observed after the modification. And finally, the values of point of zero charge were determined and were lower than 5.5 for all residues. In the experiments of adsorption in function of pH, it was verified that after pH 4, the adsorbed amount was practically constant. Regarding the necessary time to reach equilibrium, the value that was found was approximately 170 min, and kinetics followed the behavior described by the pseudo-second-order equation. The maximum adsorption capacity was 204 mg g⁻¹ for the SK-SCA biomass. The residues followed Langmuir adsorption model. Through thermodynamic parameters, it was verified that adsorption occurs spontaneously due to the negative values of Gibbs' energy. Moreover, desorption studies showed that adsorbed ions may be recovered in two cycles. Thus, due to the high adsorption capacity of lead ions, passion fruit skin can be utilized in filters to retain this metal in the future.
اظهر المزيد [+] اقل [-]Cr(VI) Adsorption and Desorption on Soils and Biosorbents النص الكامل
2013
Fernández-Pazos, M. T. | Garrido-Rodriguez, B. | Nóvoa-Muñoz, J. C. | Arias-Estévez, M. | Fernández-Sanjurjo, M. J. | Núñez-Delgado, A. | Álvarez, E.
We study the adsorption and desorption of chromium on two soils (a forest soil and a vineyard soil), both individually or after being combined with ground mussel shell, and on various materials (mussel shell, pyritic material from a dump site, and slate processing fines). The adsorption capacity depends mainly on the initial Cr concentration, on the pH, and on the abundance of noncrystalline Fe. The highest adsorption percentage (94 %) corresponds to the pyritic material, which also shows very low desorption rates (1.4 %), has the lowest pH, and has the highest concentration of noncrystalline Fe. The adsorption isotherms in most cases fit the Freundlich and Lineal models, rather than the Langmuir model, with no easily predictable maximum for chromium adsorption.
اظهر المزيد [+] اقل [-]Intra-annual Pattern of Photosynthesis, Growth and Stable Isotope Partitioning in a Poplar Clone Subjected to Ozone and Water Stress النص الكامل
2013
Pollastrini, Martina | Desotgiu, Rosanna | Camin, Federica | Ziller, Luca | Marzuoli, Riccardo | Gerosa, Giacomo | Bussotti, Filippo
An experiment in open-top chambers was carried out in summer 2008 in Curno (northern Italy) in order to study the effects of ozone and drought stress on net photosynthesis, growth and stable isotope partitioning on cuttings of an ozone-sensitive poplar clone (Oxford). The biomass (as dry weight) of stems, leaves and roots was assessed five times during the growing season on a set of plants intended for destructive measurements (set 1). Another set of plants (set 2) was used for repeated measurements (net photosynthesis) and then destroyed at the end of the experiment. The dry weight of the stems in set 1 plants was calculated using allometric relations. The results showed that drought stress had a strong effect on all the parameters assessed. Ozone did not have any effect on biomass allocation in woody stems and stable isotope composition but reduced root/shoot ratios and caused loss of leaves during the growing season. The loss of leaves in the lower part of the crown was partly recovered with the emission of new young leaves in the upper part, thus restoring the overall photosynthetic apparatus. We conclude that the metabolic costs suffered to repair damage and support growth, and the reduction in starch reserves in the roots can compromise growth and the capacity to cope with stress factors in subsequent years.
اظهر المزيد [+] اقل [-]Inorganic Composition of Saline-Irrigated Biomass النص الكامل
2013
Thy, Peter | Yu, Chaowei | Blunk, Sherry L. | Jenkins, Bryan M.
Trace element concentrations on a dry ash basis in saline-irrigated biomass feedstock from the San Joaquin Valley are investigated using multi-element spectroscopic techniques. The results show high concentrations of both Na and K compared to local baseline soil. The content of Na is higher than observed for nonsaline-irrigated biomass reflecting the salinity of the drainage water. The alkali earth elements as well as other alkali trace elements are, however, not markedly affected by the salinity of the irrigation water. The transition elements Cu and Zn are enriched only in the herbaceous feedstock compared to nonsaline biomass. Sulfur, chlorine, and phosphorus are markedly enriched in the saline feedstock. The ash content of toxic elements invariably exceeds the concentrations in the baseline soil for Cu, As, Se, Cd, Sb, and Pb. Compared to nonsaline biomass ashes, Cu is relatively enriched in the herbaceous feedstock ashes, As only in eucalyptus wood, and Cd, Sb, and Pb in woody feedstock. Selenium is relatively enriched in all saline feedstock. Only the concentrations of Cd in woody saline-irrigated feedstock may potentially exceed environmental guideline concentrations and may, thus, warrant caution for using saline biomass for soil amendment.
اظهر المزيد [+] اقل [-]Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption–Pilot and Rapid Small-Scale Column Tests النص الكامل
2013
Salih, Hafiz H. | Patterson, Craig L. | Sorial, George A.
The impact of three commercially available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide, titanium dioxide, and iron oxide nanoparticles. A rapid small-scale column test (RSSCT) was assessed for its ability to predict TCE adsorption in pilot-scale GAC in the presence and absence of NPs. Zeta potential of the three NPs and the GAC were measured. Particle size distribution of the NP dispersions was analyzed as a function of time. The surface area and the pore size distribution of the virgin and the exhausted GAC were obtained along with transmission electron microscopy and Fourier transform infrared spectroscopy analysis. The effect of NPs was found to be a function of their zeta potential, concentration, and particle size distribution. Due to their electrical charge, NPs attached to the GAC and blocked the pores and thus reduced the access to the internal pore structure. However, due to the fast adsorption kinetics of TCE, no effect from the three NPs was observed in the isotherm and kinetic studies. The RSSCT, on the other hand, accurately predicted the pilot-column TCE breakthrough in the presence of NPs.
اظهر المزيد [+] اقل [-]Bulk Atmospheric Mercury Fluxes for the Northern Great Plains, USA النص الكامل
2013
Lupo, Christopher D. | Stone, James J.
Total atmospheric bulk mercury (Hg) concentration and deposition were measured from August 2008 to November 2010 at nine locations in the Northern Great Plains, USA using passive bulk mercury samplers. Monthly mercury concentrations ranged from 1.3 to 51.0 ng L⁻¹ with an overall volume weighted mean of 12.9 ng L⁻¹. Normalized daily Hg fluxes ranged from 0.43 to 110 ng m⁻² day⁻¹ with higher rates occurring during high precipitation months as rainfall during spring and summer. Annual deposition rates ranged from 5.82 to 9.21 μg m⁻² year⁻¹ and were comparable to studies performed at similar latitudes and to estimates from the Mercury Deposition Network (MDN). There was no significant difference (p > 0.05) between measured atmospheric mercury for one colocated bulk Hg sampler and an existing MDN wet-only sampler at Eagle Butte, South Dakota, demonstrating measurement unity between the two sampling techniques in this geographic area.
اظهر المزيد [+] اقل [-]Manganese Oxychloride-Modified Hydrophobic Silica Targets Removal of Nitrates from Water النص الكامل
2013
Halevas, Eleftherios | Malakopoulos, Athanasios | Delimitis, Andreas | Zaspalis, Vassilis | Litsardakis, George | Salifoglou, Athanasios
Poised to gain insight into nitrate adsorption and removal processes from water through employment of modified surfaces, a well-defined inorganic manganese species was used in connection with hydrophobic mesoporous silica. To this end, the surface of hydrophobic mesoporous silica was modified by coating silica with a manganese oxychloride (Mn₈O₁₀Cl₃) nanoparticle layer. A sol–gel method was utilized for the synthesis of hydrophobic silica, using tetraethyl orthosilicate–methyl triethoxysilane (TEOS–MTES) as precursors. Subsequent coating with Mn₈O₁₀Cl₃ took place by mixing MnCl₂ and NaOH with hydrophobic silica. Physicochemical characterization of the Mn₈O₁₀Cl₃-coated silica was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N₂ sorption. The achieved surface modification reduced remarkably the specific surface area by 80.7 % and influenced the ability of nitrates to adsorb on Mn-modified silica. Nitrate adsorption kinetics on Mn₈O₁₀Cl₃-coated silica was studied by a batch reactor. Process parameters including pH, temperature, and initial nitrate concentration were examined thoroughly. The experimental adsorption data were fitted satisfactorily through Langmuir isotherm equations and were found to be well-represented by a pseudo-second-order kinetic model. The collective data emphasize the significance of well-defined inorganic manganese phases, coating hydrophobic silica, in optimally influencing water decontamination from pollutant nitrates.
اظهر المزيد [+] اقل [-]Assessment of Tri- and Hexavalent Chromium Phytotoxicity on Oats (Avena sativa L.) Biomass and Content of Nitrogen Compounds النص الكامل
2013
Wyszkowski, Mirosław | Radziemska, Maja
The purpose of this study was to determine the effect of soil contamination with tri- and hexavalent chromium and soil application of compost, zeolite, and CaO on the mass of oats and content of nitrogen compounds in different organs of oats. The oats mass and content of nitrogen compounds in the crop depended on the type and dose of chromium and alleviating substances incorporated to soil. In the series without neutralizing substances, Cr(VI), unlike Cr(III), had a negative effect on the growth and development of oats. The highest doses of Cr(VI) and Cr(III) stimulated the accumulation of total nitrogen but depressed the content of N-NO₃ ⁻ in most of organs of oats. Among the substances added to soil in order to alleviate the negative impact of Cr (VI) on the mass of plants, compost had a particularly beneficial effect on the growth and development of oats. The application of compost, zeolite, and CaO to soil had a stronger effect on the content of nitrogen compounds in grain and straw than in roots. Soil enrichment with either of the above substances usually raised the content of nitrogen compounds in oats grain and straw, but decreased it in roots.
اظهر المزيد [+] اقل [-]