خيارات البحث
النتائج 1141 - 1150 من 6,473
Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway
2020
Yun, Jun | Yang, Hongbao | Li, Xiaobo | Sun, Hao | Xu, Jie | Meng, Qingtao | Wu, Shenshen | Zhang, Xinwei | Yang, Xi | Li, Bin | Chen, Rui
Exposure to Aluminum oxide nanoparticles (Al₂O₃ NPs) has been associated with pulmonary inflammation in recent years; however, the underlying mechanism that causes adverse effects remains unclear. In the present study, we characterized microRNA (miRNA) expression profiling in human bronchial epithelial (HBE) cells exposed to Al₂O₃ NPs by miRNA microarray. Among the differentially expressed miRNAs, miR-297, a homologous miRNA in Homo sapiens and Mus musculus, was significantly up-regulated following exposure to Al₂O₃ NPs, compared with that in control. On combined bioinformatic analysis, proteomics analysis, and mRNA microarray, NF-κB-activating protein (NKAP) was found to be a target gene of miR-297 and it was significantly down-regulated in Al₂O₃ NPs-exposed HBE cells and murine lungs, compared with that in control. Meanwhile, inflammatory cytokines, including IL-1β and TNF-α, were significantly increased in bronchoalveolar lavage fluid (BALF) from mice exposed to Al₂O₃ NPs. Then we set up a mouse model with intranasal instillation of antagomiR-297 to further confirm that inhibition of miR-297 expression can rescue pulmonary inflammation via Notch pathway suppression. Collectively, our findings suggested that up-regulation of miR-297 expression was an upstream driver of Notch pathway activation, which might be the underlying mechanism involved in lung inflammation induced by exposure to Al₂O₃ NPs.
اظهر المزيد [+] اقل [-]The evaluation of in-site remediation feasibility of Cd-contaminated soils with the addition of typical silicate wastes
2020
Yang, Huifen | Zhang, Ge | Fu, P. (Peng) | Li, Zhen | Ma, Wenkai
In-site remediation is a relatively promising and socially acceptable technique for heavy metal contaminated soils. But the key task is to select cost-effective and environment-friendly amendents for the consideration of practical application. Based on the property of four typical silicate wastes such as straw ash (SA), coal fly ash (CFA), ferronickel slag (FNS) and blast-furnace slag (BFS), effects of four wastes on available Cd content and Cd chemical speciation in amended soils, and physicochemical properties of the amended soils were carried out in the study. The results showed that four wastes were dominately composed of the amorphous phases with OH⁻ ions readily released. When the weight ratio of silicate wastes to artificial Cd-contaminated soils reached 10%, the available Cd contents decreased from 4.12 mg/kg in untreated soils to 1.94, 1.92, 1.45 and 1.53 mg/kg in amended soils by adding SA, CFA, FNS and BFS respectively, after the soils were amended for 30 days. The residual fraction of Cd (R) was 2.54, 2.48, 2.77 and 2.58 times higher in amended soil than that in untreated soil when SA, CFA, FNS and BFS was added, respentively. The soil pH and CEC were improved. The amended soils by adding SA and FNS were looser than those by adding CFA and BFS, and air permeability of the amended soils by SA was better than that by FNS.
اظهر المزيد [+] اقل [-]Differences in plant metabolites and microbes associated with Azadirachta indica with variation in air pollution
2020
Sharma, Garima | Rahul, | Guleria, Randeep | Mathur, Vartika
Mitigation of air pollution by plants is a well-established phenomenon. Trees planted on the roadside are known to reduce particulate matter pollution by about 25%. In an urban ecosystem, especially in a metropolitan city such as Delhi, roadside trees are constantly exposed to air pollution. We, therefore, evaluated the effect of air pollution on a common Indian roadside tree, Neem (Azadirachta indica), and its associated microbes in areas with high and low levels of particulate matter (PM) pollution in Delhi. We hypothesized that alteration in the air quality index not only influences plant physiology but also its microbiome.A 100-fold increase in the number of epiphytic and 10–100 fold increase in endophytic colonies were found with 1.7 times increase in the level of pollutants. Trees in the polluted areas had an abundance of Salmonella, Proteus and Citrobacter, and showed increased secondary metabolites such as phenols and tannins as well as decreased chlorophyll and carotenoid. The number of unique microbes was positively correlated with increased primary metabolites.Our study thus indicates that, alteration in air quality affects the natural micro-environment of plants. These results may be utilized as sustainable tools for studying plant adaptations to the urban ecosystem.
اظهر المزيد [+] اقل [-]Toxicological screening of airborne particulate matter in atmosphere of Pune: Reactive oxygen species and cellular toxicity
2020
Jan, Rohi | Roy, Ritwika | Bhor, Renuka | Pai, Kalpana | Satsangi, P Gursumeeran
Present study screened the toxicological assessment of airborne particulate matter (PM), mechanistic investigation, relationship between the physicochemical characteristics and its associated toxic response. The average concentration of both PM₁₀ and PM₂.₅ exceeded the Indian National Ambient Air Quality Standards. In present study, PM bound metals; Fe, Cu, Cr, Ni, Mn, Pb, Cd, Zn, Sr and Co have been taken into account with total metal concentration of 0.83 and 0.44 μg m⁻³ of PM₁₀ and PM₂.₅ mass concentrations, respectively. The contribution of redox active metals (Fe, Cu, Cr, Ni and Mn) in PM was more as compared to non-redox metals (Pb, Cd and Co) indicating significant risk to the exposed population as these metals possess the ability to produce reactive oxygen species (ROS) which are responsible for various diseases. The cytotoxicity profiles of PM samples determined by MTT assay on two different cell lines (A549 and PBMC) exhibited dose-dependent effects after 24 h exposure, but the consequences differ with respect to particle size and sampling periods. A significant decrease in cell viability with varying PM concentrations (20, 40, 60, 80 and 100 μg ml⁻¹) with respect to control was found in both cell lines. Incubation of RBC suspension with PM samples caused pronounced disruption of RBC and thus exhibited substantial hemolytic behavior. PM samples showed a range of potency to produce reactive oxygen species (ROS). Almost all PM samples increased the level of pro-inflammatory mediator (Nitric oxide) when compared to corresponding unexposed controls suggesting the important role of reactive nitrogen species in induction of cellular toxicity.
اظهر المزيد [+] اقل [-]Co-occurrence and distribution of organophosphate tri- and di-esters in indoor dust from different indoor environments in Guangzhou and their potential human health risk
2020
Hu, Qiongpu | Xu, Liang | Liu, Yi | Zeng, Xiangying | Yu, Zhiqiang
In this study, 45 indoor dust samples and four particulate samples from air-conditioner filters were collected from four different indoor environments in Guangzhou, China, and the concentration and composition of organophosphate tri-esters (OPEs) and organophosphate di-esters (Di-OPs) were determined. Eight of the 10 target OPEs were detected in indoor dust at different detection frequencies (DFs), with tris(2-chloroisopropyl) phosphate and tris(2-chloroethyl) phosphate being the main components. Seven target Di-OPs were detected at different DFs, with diphenyl phosphate being the dominant compound. The total OPEs (∑8 OPEs) and total Di-OPs (∑7 Di-OPs) concentrations varied from 726 to 39,312 ng/g and 68.8–14,766 ng/g, respectively. The ∑8 OPEs concentrations in instrumental houses were significantly higher (p < 0.001) than in three other indoor environments. The varying strengths of the correlation between Di-OPs and their respective parent OPEs was suggestive of their emission sources (e.g., direct application, impurities in OPE formulas, and OPE degradation). The hazard index (HI) values of individual OPEs in residential house were lower than 1, the results suggested a limited human health risk from individual OPEs. However, the total HI value (∑HIs) of OPEs was approximately 1 based on a high exposure scenario and suggested a low risk for toddlers.
اظهر المزيد [+] اقل [-]New insights into concentrations, sources and transformations of NH3, NOx, SO2 and PM at a commercial manure-belt layer house
2020
Wang, Yue | Niu, Binglong | Ni, Ji-Qin | Xue, Wentao | Zhu, Zhiping | Li, Xinrong | Zou, Guoyuan
Pollutant gases and particulate matters (PM) from livestock facilities can affect the health of animals and farm workers and lead to great social environmental risks. This paper presents a comprehensive study on the characteristics of ammonia (NH₃), nitrogen oxides (NOₓ), sulfur dioxide (SO₂) and PM (including PM₂.₅ and PM₁₀) in a 100,000-bird manure-belt layer house in suburb Beijing for three typical seasons of summer, autumn and winter. Indoor air was sampled at an exhaust fan of the mechanically ventilated commercial house. The monitored indoor concentrations of NH₃, NOₓ, SO₂, PM₂.₅ and PM₁₀ were 3.7–5.0 mg m⁻³, 17–58 μg m⁻³, 0–11 μg m⁻³, 100–149 μg m⁻³ and 354–828 μg m⁻³, respectively. The indoor NH₃ concentrations were largely influenced by the manure removal frequency. The NOₓ and SO₂ were mainly sourced from the ambient air, and the NOₓ was also partly sourced from manure decomposition in summer. The indoor PM₂.₅ and PM₁₀ were largely sourced from the ambient air and the indoor manure, respectively. The abundant indoor NH₃ caused significantly higher NH₄⁺ concentration in the indoor PM₁₀ (7.98 ± 9.04 μg m⁻³) than that in the ambient PM₁₀ (3.48 ± 3.52 μg m⁻³). Secondary inorganic ions (SO₄²⁻, NO₃⁻ and NH₄⁺) totally contributed 5.7% and 14.6% to the indoor and ambient PM₂.₅, respectively; they contributed 2.8% and 8.9% to the indoor and ambient PM₁₀, respectively. Organic carbon was the main component of the PM and accounted for 26.6% and 41.5% of the indoor PM₂.₅ and PM₁₀, respectively. Heavy metal elements (Zn, Cu and Cr) were likely transported from feed to manure and finally accumulated in the PM. Given the high emission potential, the air pollutants from animal production suggested potential risks for human health.
اظهر المزيد [+] اقل [-]Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress
2020
Fatemi, Hamideh | Esmaiel Pour, Behrooz | Rizwan, Muhammad
Rapid global industrialization has increased the chances of toxic trace element accumulation in plants and other living things via the food chain. Thus, there is an urgent need to find suitable techniques with the aim to alleviate the stress of toxic trace elements in crops to feed the ever-increasing population with quality food. This research was based on the hypothesis that the growth traits of coriander (Coriandrum sativum L.) plants can be improved by the combined application of lead (Pb) resistant microbes and silicon nanoparticles (Si-NPs) under Pb stress. Two Pb-resistant strains of the microbes were isolated under different Pb concentrations, and then these strains were characterized for different traits. The strains were inoculated in the Pb-spiked (500 mg/kg) soil, and Si-NPs (1.5 mM) were foliar sprayed at different time (three times, two-week interval). The growth and stress tolerance of the plant were assessed by measuring the morphological traits, chlorophyll contents, proline, electrolyte leakage, and enzymatic and non-enzymatic antioxidant activities of the leaves. Results demonstrated that Pb stress had significant negative impacts on all the traits of the coriander. Si-NPs application or bacterial inoculation reversed the Pb-induced toxicities in plants, which was indicated by the improved growth, photosynthesis, and antioxidant enzyme activities of the plants under Pb stress. The effect of the combined use of Si-NPs and microbes was more pronounced than the treatments alone. It can be concluded that Pb-resistant microorganism and Si-NPs could effectively be used to alleviate Pb stress in coriander.
اظهر المزيد [+] اقل [-]Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air
2020
Wei, Wenjuan | Sivanantham, Sutharsini | Malingre, Laeticia | Ramalho, Olivier | Mandin, Corinne
Semivolatile organic compounds (SVOCs) in air can react with hydroxyl radicals (OH), nitrate radicals (NO₃) and ozone (O₃). Two questions regarding SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases remain to be addressed: according to the existing measurements in the literature, which are the most reactive SVOCs in air, and how can the SVOC reactivity in the gas and particle phases be predicted? In the present study, a literature review of the second-order rate constant (k) was carried out to determine the SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases in ambient and indoor air at room temperature. Measured k values were available in the literature for 90 polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphates, dioxins, di(2-ethylhexyl)phthalate (DEHP) and pesticides including pyrifenox, carbamates and terbuthylazine. PAHs and organophosphates were found to be more reactive than dioxins and PCBs. Based on the obtained data, quantitative structure-activity relationship (QSAR) models were developed to predict the k value using quantum chemical, molecular, physical property and environmental descriptors. Eight linear and nonlinear statistical models were employed, including regression models, bagging, random forest and gradient boosting. QSAR models were developed for SVOC/OH reactions in the gas and particle phases and SVOC/O₃ reactions in the particle phase. Models for SVOC/NO₃ and SVOC/O₃ reactions in the gas phase could not be developed due to the lack of measured k values for model training. The least absolute shrinkage and selection operator (LASSO) regression and random forest models were identified as the most effective models for SVOC reactivity prediction according to a comparison of model performance metrics.
اظهر المزيد [+] اقل [-]Microbial remediation of micro-nano plastics: Current knowledge and future trends
2020
Tiwari, Neha | Santhiya, Deenan | Sharma, Jai Gopal
An alarming rise of micro-nano plastics (MNPs) in environment is currently causing the biggest threat to biotic and abiotic components around the globe. These pollutants, apart from being formed through fragmentation of larger plastic pieces and are also manufactured for commercial usage. MNPs enter agro-ecosystem, wildlife, and human body through the food chain, ingestion or through inhalation, causing blockage in the blood-brain barrier, lower fertility, and behavioural abnormalities among other problems. Hence, it becomes essential to develop novel procedures for remediation of MNPs. Among the numerous existing methods, microbial remediation promises to degrade/recover MNPs via a green route. Since microbial remediation processes mostly depend upon biotic and abiotic factors such as (temperature, pH, oxidative stress, etc.), it becomes easy to influence changes in the plastic pollutants. Hence, with the help of recent technologies, a complete degradation/removal of MNPs can be expected by utilizing the respective carbon content as energy sources for growth of microorganisms. In this review, considering the urgent environmental need, the impact of micro-nano plastics on ecosystem along with its corresponding degradation mechanisms has been brought out. Also, importance of the various recent research approaches in MNPs remediation is highlighted. Finally, the role of enzyme and membrane technology, nanoparticle technology, and metagenomics in remediation of MNPs are discussed for the first time in detail to bring out a novel remedy for the environment.
اظهر المزيد [+] اقل [-]Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella
2020
Xu, Yi-Chuang | Xu, Yi-Huan | Zhao, Tao | Wu, Li-Xiang | Yang, Shui-Bo | Luo, Zhi
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
اظهر المزيد [+] اقل [-]