خيارات البحث
النتائج 1141 - 1150 من 7,240
BHPF exposure impairs mouse and human decidualization
2022
Jin, Zhi-Yong | Liu, Cheng-Kan | Hong, Yu-Qi | Liang, Yu-Xiang | Liu, Li | Yang, Zeng-Ming
Although BHPF has been widely used in plastic manufacturing as a substitute for BPA, current evidence suggests that BHPF also causes harmful effects on reproduction. However, effects of BHPF on mammalian early pregnancy are still poorly defined. This study aimed to explore the effects of BHPF on early pregnancy, especially decidualization and embryonic development in mice and human beings. The results showed that 50 and 100 mg/kg BHPF exposure reduced birth weight, and implantation site weight on the day 8 of pregnancy in mice. Because BHPF inhibits both embryo development and artificial decidualization in mice, suggesting that the detrimental effects of BHPF should be from its effects on embryo development and decidualization. Under in vitro decidualization, 10 μM BHPF inhibits decidualization and leads to disordered expression of Lamin B1 and collagen in mice. In addition, 10 μM BHPF also inhibits decidualization, and causes disordered expression of both collagen III and Lamin B1 under human in vitro decidualization. However, collagen III supplementation can rescue BHPF inhibition on decidualization. Further, our study demonstrates that BHPF impairs human decidualization through the HB-EGF/EGFR/STAT3/Collagen III pathway. Taken together these data suggest that exposure to BHPF impairs mouse and human decidualization during early pregnancy.
اظهر المزيد [+] اقل [-]Effect of freeze-thaw cycle aging and high-temperature oxidation aging on the sorption of atrazine by microplastics
2022
Sun, Shu | Sui, He | Xu, Liang | Zhang, Jiao | Wang, Dongying | Zhou, Zhenfeng
This study aims to better understand the aging characteristics of microplastics in the environment and the influence of aging microplastics on the migration and transformation of organic pollutants. In this study, polyvinyl chloride (PVC) and polyethylene (PE) were chosen as research objects, and the effects of two aging methods (freeze-thaw cycle aging and high-temperature oxidation aging) on their surface properties and atrazine (ATZ) sorption were investigated. The crystallinity of PE increased after freeze-thaw cycling and decreased after high-temperature oxidation. The freeze-thaw cycle destroys the amorphous region of PE, reducing the micropores on the PE surface and decreasing the ATZ adsorbed by PE. Although aging had no significant effect on the surface structure of PVC, it caused new oxygen-containing functional groups to be produced on the PVC surface, which reduced the ATZ adsorption capacity. These results show that the two aging modes change the surface properties of PVC and PE, thus affecting the sorption mechanism of ATZ, and provide a theoretical premise for the natural behavior and ecological chance assessment of ATZ in the presence of microplastics.
اظهر المزيد [+] اقل [-]Effects of exposure to per- and polyfluoroalkyl substances on vaccine antibodies: A systematic review and meta-analysis based on epidemiological studies
2022
Zhang, Xin | Xue, Liang | Deji, Zhuoma | Wang, Xin | Liu, Peng | Lü, Jing | Zhou, Ruke | Huang, Zhenzhen
Vaccines are essential for children to defend against infection. Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants with the characteristics of persistence and bioaccumulation. PFAS exposure can affect the function of the nervous, endocrine, and immune system of animals and humans. We aimed to conduct a systematic review and meta-analysis of the epidemiological studies investigating potential relationships between PFAS exposure and vaccine antibody levels, and assessed whether PFAS would affect vaccine response in healthy children. A literature search was conducted in PubMed, Web of Science, and Scopus databases up to February 2022. We chose studies that measured serum vaccines antibodies and PFAS concentrations of the participants. Essential information, including mean difference of percentage change, regression coefficient, odds ratio, Spearman correlation coefficient, and 95% confidence intervals, were extracted from the selected studies to conduct descriptive analysis and meta-analysis where appropriate. The qualities of these studies were evaluated as well. Finally, nine epidemiological studies about children met our inclusion criteria. A high degree of heterogeneity is observed in terms of breastfeeding time, confounder control, and detection method. Exposure to perfluorooctanoic acid and perfluorohexane sulfonic acid is negatively associated with tetanus antibody level in children without heterogeneity by Cochran's Q test (p = 0.26; p = 0.55), and exposure to perfluorohexane sulfonate is negatively associated with tetanus antibody level but with heterogeneity (p = 0.04). This comprehensive review suggests that PFAS can have adverse health effects on children by hindering the production of vaccine antibodies. There are some consistent and negative associations between children exposure to certain PFAS and tetanus antibody level. The association of the other four vaccines (measles, rubella, mumps, and influenza) with PFAS remains uncertain, because very few studies are available. Further studies are needed to validate the possible associations.
اظهر المزيد [+] اقل [-]Subtle ecosystem effects of microplastic exposure in marine mesocosms including fish
2022
Foekema, Edwin M. | Keur, Martijn | Van Der Vlies, Liesbeth | Van Der Weide, Babeth | Bittner, Oliver | Murk, Albertinka J.
For two months, communities in 5.8 m3 outdoor marine mesocosms were exposed to 700 μm sphere-shaped polystyrene (PS) beads in dosages between 0.08 and 80 g/m2 . Barnacle (Semibalanus balanoides) densities were reduced at dosages of 0.8 g/m2 onwards without following a standard dose response curve. Lugworms and fish (Solea solea) ingested PS-beads without accumulating them. Lugworms (Arenicola marina) ingested the beads nonselective with the sediment without negative effects. The fish seemed to ingest the plastics only occasionally and at the final sampling day even in the highest dosed mesocosms (>30 beads/cm2) only 20% contained plastic. The condition index of the fish was slightly reduced in mesocosms with dosages of 0.8 g/m2 onwards. No difference in condition was found between fish with and without ingested plastic across mesocosms, illustrating the difficulty to relate plastic ingestion with condition from field data. The fish also ingested mollusks with shells exceeding the size of the PS-beads. Bivalves rejected the PS-beads as pseudofeces, without obvious impact on their condition. Mussel’s (Mytilus edulis) pseudofeces present an effective matrix to monitor microplastic presence in the water column. Species richness and diversity of the pelagic and benthic community were not affected although, a trend was found that the lower microplastic dosages had a positive effect on the total abundance of benthic invertebrates. In general, the observed effects at even the highest exposure concentrations were that subtle that they will be obscured by natural variation in the field. This underlines the importance of experiments under semi-field conditions for meaningful assessment of the ecological impact of microplastics. This study was performed with the real life, non-toxic, sphere-shaped polystyrene beads as were lost during an actual spill near the Dutch Wadden sea in January 2019. We recommend future mesocosm studies with other types of microplastics, including microfibers, weathered microplastics from sea, and smaller sized particles down to nanoplastics.
اظهر المزيد [+] اقل [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level
2022
Amariei, G. | Rosal, Roberto | Fernandez-Pinas, Francisca | Koelmans, A.A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
اظهر المزيد [+] اقل [-]Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin, Kenya
2022
K'oreje, Kenneth | Okoth, Maurice | Langenhove, Herman Van | Demeestere, Kristof
Groundwater constitutes a major source of fresh water globally. However, it faces serious quality challenges from both conventional pollutants and contaminants of emerging concern (CECs) such as pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides. There exists a significant knowledge gap regarding the occurrence of CECs in groundwater, especially in Africa. This study presents unique data on the concentration of fourteen PhACs, five PCPs and nine pesticides in groundwater wells in Nzoia River basin, Kenya. Generally, PCPs were the most dominant class with concentrations up to 10 μg/L (methylparaben). Anti(retro)virals, being important in the treatment of HIV/AIDS, were more prevalent among the PhACs as compared to the developed world, with concentrations up to 700 ng/L (nevirapine). In contrast, pesticides were measured at lower concentrations, the maximum being 42 ng/L (metolachlor). A basic risk assessment shows that – among the detected CECs – carbamazepine may pose medium human health risk and requires further investigation among infants and children. Point-of-use (POU) technologies are being increasingly promoted especially in the developing nations to provide drinking water solutions at the household level, but very little data is available on their performance towards CECs removal. Therefore, besides measuring CECs in groundwater, we investigated ceramic filters and solar disinfection (SODIS) as possible POU treatment options. Both techniques show potential to treat CECs in groundwater, with removal efficiencies higher than 90% obtained for 41 and 22 compounds in ceramic filters and SODIS, respectively. Moreover, for the more recalcitrant compounds (e.g. sulfadoxin), the performance is improved by up to three orders of magnitude when using TiO₂ as a photocatalyst in SODIS.
اظهر المزيد [+] اقل [-]The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk
2022
Zhang, Ziqi | Gao, Shu-Hong | Luo, Gaoyang | Kang, Yuanyuan | Zhang, Liying | Pan, Yusheng | Zhou, Xu | Fan, Lu | Liang, Bin | Wang, Aijie
The widespread occurrence of microplastics in aquatic ecosystems that resulted in environmental contamination has attracted worldwide attention. Microplastics pose a potential threat to the growth and health of aquatic organisms, thereby affecting the function of the ecosystems. As one of the top ten countries producing and consuming plastic products globally, China's aquatic ecosystems have been profoundly affected by microplastics. In this review, we have summarized the microplastics contamination in three typical water environments (marine environment, freshwater environment, and wastewater treatment plants) in China, elaborated on the adverse impacts of microplastics on the ecological environment, and evaluated the potential ecological risks exposed to the ecosystem. In addition, the progress of microplastics extraction methods, as the important basis of microplastics related research, in aquatic ecosystems was introduced, especially the difference between the extraction of microplastics from wastewater and sludge samples. At present, most of the research on microplastics focuses on “one point”, such as a certain river or wastewater treatment plant. Research on the mitigation and transfer of microplastics among different connected water environments is still lacking. Also, the microscale ecotoxicity caused by microplastics is poorly understood. In the end, we proposed suggestions and perspectives for future research regarding microplastics in the aquatic ecosystems in China.
اظهر المزيد [+] اقل [-]Temporal variations of soil NO and NO2 fluxes in two typical subtropical forests receiving contrasting rates of N deposition
2022
Ke, Piaopiao | Kang, Ronghua | Avery, Loreena K. | Zhang, Jiawei | Yu, Qian | Xie, Danni | Duan, Lei
Soils have been widely acknowledged as important natural sources of nitric oxide (NO) and meanwhile sinks of nitric dioxide (NO₂). High nitrogen deposition across South China could potentially result in large NO emissions from subtropical forests soils there. In this study, the dynamic chamber method was applied to monitor NO and NO₂ fluxes at two subtropical forest sites in South China, namely “Qianyanzhou” (QYZ) and “Tieshanping” (TSP). Chronically higher N deposition occurred at TSP than that at QYZ. Besides soil water filled pore spaces (WFPS) and temperature, ambient NO concentration could also possibly be important in regulating temporal NO emissions, especially in the winter. For both sites, the optimum soil temperature was above 25 °C, while the optimum WFPS for NO release at QYZ was higher (65–70%) than that at TSP (<23%). Moreover, heavy rainfall could trigger NO emission pulses from moist soils at QYZ, while rainfall-induced NO pulses were only observed after a long drying period at TSP. Distinctly different contents of mineral nitrogen and soil moisture conditions between the two sites might induce the divergent preference of WFPS and responses to rainfall. The cumulative soil emission of NO reached 0.41 ± 0.01 and 0.76 ± 0.01 kg N ha⁻¹ yr⁻¹ at QYZ and TSP, contributing to 2.5% and 1.4% of the annual throughfall N input, respectively. At both sites, NO₂ were mainly deposited to soils, accounting for 2% and 21% of soil-emitted NO at QYZ and TSP, respectively. The observed annual NO emissions at these two sites were larger than the median values observed for tropical and temperate forests and unfertilized croplands. Higher N deposition could induce larger NO emission potential, while soil temperature and pH might also be important in regulating regional soil NO emissions as N-loss from subtropical forests.
اظهر المزيد [+] اقل [-]Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
اظهر المزيد [+] اقل [-]Mechanical recycling of plastic waste as a point source of microplastic pollution
2022
Suzuki, Go | Uchida, Natsuyo | Tuyen, Le Huu | Tanaka, Kosuke | Matsukami, Hidenori | Kunisue, Tatsuya | Takahashi, Shin | Viet, Pham Hung | Kuramochi, Hidetoshi | Ōsako, Masahiro
Plastic pollution has become one of the most pressing environmental issues. Recycling is a potential means of reducing plastic pollution in the environment. However, plastic fragments are still likely released to the aquatic environment during mechanical recycling processes. Here, we examined the plastic inputs and effluent outputs of three mechanical recycling facilities in Vietnam dealing with electronic, bottle, and household plastic waste, and we found that large quantities of microplastics (plastics <5 mm in length) are generated and released to the aquatic environment during mechanical recycling without proper treatment. Comparisons with literature data for microplastics in wastewater treatment plant effluents and surface water indicated that mechanical recycling of plastic waste is likely a major point source of microplastics pollution. Although there is a mismatch between the size of the microplastics examined in the present study and the predicted no-effect concentration reported, it is still possible that microplastics generated at facilities pose risks to the aquatic environment because there might be many plastic particulates smaller than 315 μm, as suggested by our obtained size distributions. With mechanical recycling likely to increase as we move to a circular plastics economy, greater microplastics emissions can be expected. It is therefore an urgent need to fully understand not only the scale of microplastic generation and release from plastic mechanical recycling but also the environmental risk posed by microplastics in the aquatic environment.
اظهر المزيد [+] اقل [-]