خيارات البحث
النتائج 1151 - 1160 من 1,955
Photodegradation of Tri (2-chloroethyl) Phosphate in Aqueous Solution by UV/H₂O ₂ النص الكامل
2013
Ruan, Xin-Chao | Ai, Rui | Jin, Xiao | Zeng, Qing-Fu | Yang, Ze-Yu
The photooxidation degradation of tri (2-chloroethyl) phosphate (TCEP) by combining UV with hydrogen peroxide as oxidant was primarily studied in the present study by evaluating various treatment parameters. The results suggested that light intensity, initial pH and concentration of TCEP and H₂O₂, and reaction time affected the degradation efficiency of TCEP. The total organic carbon (TOC) removal rates, and the yield rates of Cl⁻and PO₄ ³⁻reached up to 86 %, 94 % and 97 %, respectively, under the optimized conditions in the present study. The degradation process obeyed the pseudo-first-order kinetic reaction expressed as ln (C ₜ/C ₀) =−0.0275 t with a R ² of 0.9962. The addition of t-butanol indicated that hydroxyl radicals played an important role in the degradation of TCEP. The primary investigation of the degradation mechanism of TCEP suggested that TCEP molecules were attacked by hydroxyl radicals produced from H₂O₂ with the irradiation of UV light, PO₄ ³⁻, Cl⁻and chlorinated alcohol/aldehyde, and/or non-chlorinated aldehyde with small molecular weight were produced, these produced small organic molecules were furthered oxidized to acids, most of them were finally mineralized to CO₂ and H₂O. The present technology was successfully applied for degrading TCEP in simulated real wastewater, which shows a promising potential for treating similar contaminants using corresponding advanced oxidation technology.
اظهر المزيد [+] اقل [-]Manganese Oxychloride-Modified Hydrophobic Silica Targets Removal of Nitrates from Water النص الكامل
2013
Halevas, Eleftherios | Malakopoulos, Athanasios | Delimitis, Andreas | Zaspalis, Vassilis | Litsardakis, George | Salifoglou, Athanasios
Poised to gain insight into nitrate adsorption and removal processes from water through employment of modified surfaces, a well-defined inorganic manganese species was used in connection with hydrophobic mesoporous silica. To this end, the surface of hydrophobic mesoporous silica was modified by coating silica with a manganese oxychloride (Mn₈O₁₀Cl₃) nanoparticle layer. A sol–gel method was utilized for the synthesis of hydrophobic silica, using tetraethyl orthosilicate–methyl triethoxysilane (TEOS–MTES) as precursors. Subsequent coating with Mn₈O₁₀Cl₃ took place by mixing MnCl₂ and NaOH with hydrophobic silica. Physicochemical characterization of the Mn₈O₁₀Cl₃-coated silica was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N₂ sorption. The achieved surface modification reduced remarkably the specific surface area by 80.7 % and influenced the ability of nitrates to adsorb on Mn-modified silica. Nitrate adsorption kinetics on Mn₈O₁₀Cl₃-coated silica was studied by a batch reactor. Process parameters including pH, temperature, and initial nitrate concentration were examined thoroughly. The experimental adsorption data were fitted satisfactorily through Langmuir isotherm equations and were found to be well-represented by a pseudo-second-order kinetic model. The collective data emphasize the significance of well-defined inorganic manganese phases, coating hydrophobic silica, in optimally influencing water decontamination from pollutant nitrates.
اظهر المزيد [+] اقل [-]Quantitative Characterization and Prediction Modeling of Photoreactivation of Coliforms After Ultraviolet Disinfection of Reclaimed Municipal Wastewater النص الكامل
2013
Guo, Mei-Ting | Huang, Jing-Jing | Hu, Hong-Ying | Liu, Wen-Jun | Yang, Jian
Photoreactivation is considered to be one of the principal disadvantages of the application of ultraviolet disinfection, but knowledge about the photoreactivation potential is limited since few studies to model photoreactivation have been carried out. In order to develop a model for the prediction of the photoreactivation potential, the photoreactivation of Escherichia coli, fecal coliforms, and total coliforms in the tertiary effluent of a wastewater treatment plant was investigated using traditional plate count methods in this study. The tested bacteria were exposed to various UV doses (5-80 mJ/cm2) with a low-pressure UV-collimated beam apparatus and then put under sunlight lamp to experience photoreactivation for up to 72 h. All tested bacteria underwent photoreactivation with a similar trend. When the UV dose increased from 5 to 20 mJ/cm2, the maximum reactivation value of E. coli decreased from 105 to 10 CFU/mL over 8 h, and the reactivation rate decreased from 3.6 to 3.0 × 10-4/h. Based on the photoreactivation results, an exponential model was developed to predict the possible maximum photoreactivation level (N m = αD - β N 0). This simple photoreactivation potential prediction model contains only two variables (UV dose and initial bacterial count), with two constants related to the microorganism species. This model can be easily generalized and is helpful for the optimum design of UV disinfection systems. © 2013 Springer Science+Business Media Dordrecht.
اظهر المزيد [+] اقل [-]Fate and Transport of Petroleum Hydrocarbons in Vadose Zone: Compound-specific Natural Attenuation النص الكامل
2013
Yang, M. | Yang, Y. S. | Du, X. | Cao, Y. | Lei, Y.
Groundwater contamination caused by petroleum hydrocarbon (PHC) spills mostly from oil industry is a major environmental concern worldwide. However, infiltration into groundwater is decreasing due to the natural attenuation processes of PHCs in vadose zone, which acts as a safeguard of invaluable groundwater resource against contamination. This study was conducted to determine the retardation capacity of vadose zone and its influence factors based on investigations of a petroleum-contaminated site in NE China. Column leaching experiments in homogeneous and heterogeneous soils were utilized to simulate the actual infiltration process, which aimed to understand the variation of PHC compounds in vadose zone and to examine the effects of soil and water properties on the diversification of the compounds by using gas chromatography–mass spectrometry (GC–MS). The results showed that adsorption and biodegradation are dominant processes and 84 %, 76 %, and 66 % of the organic contaminants were entrapped in fine, medium, and coarse sands, respectively. This was mainly caused by the adsorption coefficient (K d ), which was linked with the soil properties; more specifically, smaller soil aggregates mean a higher K d value and such discrimination also exists among petroleum compounds. Real-time polymerase chain reaction (RT-PCR) and culture-based methods were applied to identify the degrading microorganisms. Results demonstrate that these microorganisms could degrade compounds such as chainalkanes (ChA), cycloalkanes (CyA), and aromatic (Ars) into asphaltenes (Asp). The microorganism population increased with biodegradation products and the consequence of biodegrading capacity was (from high to low): ChA, CyA, and Ars; chemical analyses in the heterogeneous soil experiment indicated that concentration of the biodegradation products in leachate was negatively correlated to dissolved oxygen (DO) as a consumption of oxidants but positively correlated to electrical conductivity (EC) and pH of water. Enzyme activities and microorganism population of soil were positively correlated to concentration of biodegradation products.
اظهر المزيد [+] اقل [-]Treatment of Oily Bilge Water from Small Fishing Vessels by PUF-Immobilized Gordonia sp. JC11 النص الكامل
2013
Chanthamalee, Jirapat | Wongchitphimon, Teerayut | Luepromchai, Ekawan
Petroleum hydrocarbons in the bilge water of small fishing vessels are continuously released into the environment. The bilge water samples usually contained low amounts of oil-degrading bacteria; therefore, this study examines application of polyurethane foam (PUF)-immobilized Gordonia sp. JC11, a known lubricant-degrading bacterial inoculum, for the treatment of bilge water. Batch microcosm experiments showed that the PUF-immobilized bacteria were more efficient at removing oil than indigenous microorganisms and were able to remove approximately 40-50 % of the boat lubricant (1,000 mg L-1). The immobilized PUF samples rapidly adsorbed oil from the bilge water inside a small fishing vessel; however, the uninoculated PUF contained more oil than the inoculated PUF at most time points. The hydrocarbon components were also different when comparing inoculated and uninoculated PUF. These results indicate that the oil accumulated inside the PUF containing immobilized bacteria was being degraded by the Gordonia sp. JC11. However, these bacteria gradually die off after repeated oil exposure, and it is suggested that PUF-immobilized cells be replaced at timed intervals. This technique is considered simple and cheap; thus, it could be used to reduce chronic oil pollution from the release of bilge water. © 2013 Springer Science+Business Media Dordrecht.
اظهر المزيد [+] اقل [-]The Effects of Glycine on Breakpoint Chlorination and Chlorine Dosage Control Methods for Chlorination and Chloramination Processes in Drinking Water النص الكامل
2013
Hui, Tao | Feng, Xu | Wei, Chen | Min, Sun | Liang, Zhen | Bo, Feng
Chlorine is the most commonly used chemical for water and wastewater disinfection worldwide, and it reacts with both ammonia and dissolved organic nitrogen. Using the salicylate spectrophotometric method, effects of glycine on the classic breakpoint chlorination are studied using glycine as a surrogate for dissolved organic nitrogen. The results show that the shape of the breakpoint chlorination curve with glycine was analogous to that of water without glycine. Increasing the glycine concentration moves the chlorination breakpoint curve to the right, demonstrating that more chlorine must be added to replace the chlorine consumed by glycine and yield the desired residual active chlorine concentration. At the peak of the chlorination breakpoint curve, both NH₂Cl and mono-chlorinated organic chloramine reach their maximum. The Cl₂/N ratio of the peak is linearly related to the glycine concentration, and our calculations indicate that the maximum of mono-chlorinated organic chloramine formation by glycine chlorination occurs at a stoichiometric ratio of 1:1; the same as that for chlorinating ammonia to NH₂Cl. The distribution of NH₂Cl and organic chloramines is controlled by [Gly]/[NH₃-N]. At the breakpoint, ammonia and glycine are completely oxidized by chlorine, which leads to chlorine depletion. The stoichiometric ratio for the complete oxidation of glycine was 3:1, larger than that for complete oxidation of ammonia (2:1). For the different stoichiometric ratio in reaction of oxidation of ammonia and glycine, the sum of ammonia and glycine cannot be used as a chlorine dosage control parameter. The chlorine control method involving ammonia and glycine for chlorine and chloramination process is established.
اظهر المزيد [+] اقل [-]Composition and Integrity of PAHs, Nitro-PAHs, Hopanes, and Steranes in Diesel Exhaust Particulate Matter النص الكامل
2013
Huang, Lei | Bohac, Stanislav V. | Chernyak, Sergei M. | Batterman, Stuart A.
Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and measurement integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultralow sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rates of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02-2 and 1 μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 C and 33 % relative humidity (RH) for 24 h, storing filter samples (without extraction) wrapped in aluminum foil at 4 C for up to 1 month, and storing filter extracts in glass vials capped with Teflon crimp seals at 4 C for up to 6 months. After conditioning filters for 24 h, 30 % of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 C for up to 1 month did not lead to significant losses, but storing extracts for 5 months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts, can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing. © 2013 Springer Science+Business Media Dordrecht.
اظهر المزيد [+] اقل [-]Topographical Influences on the Spatial Distribution of Soil Mercury at the Catchment Scale النص الكامل
2013
Gunda, Thushara | Scanlon, Todd M.
Inorganic forms of mercury (Hg) can be converted by natural processes into methylmercury, a highly potent neurotoxin that can bioaccumulate in food chains and pose a risk to human health. Although Hg can enter aquatic environments through direct deposition, the predominant source derives from complex terrestrial cycling in nearby ecosystem vegetation and soils. Here we assess the spatial distribution of soil and litterfall Hg within two paired catchments of the Shenandoah National Park: the northwest-facing North Fork Dry Run (NFDR) and the southeast-facing Hannah Run (HR) catchments. Litterfall Hg concentrations were not significantly different between the NFDR and HR catchments. This may be attributable to the speciation of Hg (gaseous elemental Hg) that is involved in leaf-level accumulation. Significant differences in soil organic-layer Hg concentrations were observed between the two study catchments, with NFDR soils having roughly 50 % higher Hg concentrations than those from HR. These differences can be explained by differences in soil N content (and to a lesser extent soil C content) between catchments, as both elements exert a strong control of the amount of Hg bound in soils. We found no evidence that topographic aspect contributes to the spatial variability of soil Hg concentrations in these paired catchments, but did detect an influence from elevation. Soils located near ridges in mountainous catchments can contain relatively high Hg concentrations due to (1) lower turnover rates in soil organic matter pools, (2) enhanced deposition, and (3) limited mobilization of Hg from those areas.
اظهر المزيد [+] اقل [-]Submarine Groundwater Discharge as a Source of Mercury in the Bay of Puck, the Southern Baltic Sea النص الكامل
2013
Szymczycha, Beata | Miotk, Michał | Pempkowiak, Janusz
Both groundwater flow and mercury concentrations in pore water and seawater were quantified in the groundwater seeping site of the Bay of Puck, southern Baltic Sea. Total dissolved mercury (HgTD) in pore water ranged from 0.51 to 4.90 ng l⁻¹. Seawater samples were characterized by elevated HgTD concentrations, ranging from 4.41 to 6.37 ng l⁻¹, while HgTD concentrations in groundwater samples ranged from 0.51 to 1.15 ng l⁻¹. High HgTD concentrations in pore water of the uppermost sediment layers were attributed to seawater intrusion into the sediment. The relationship between HgTD concentrations and salinity of pore water was non-conservative, indicating removal of dissolved mercury upon mixing seawater with groundwater. The mechanism of dissolved mercury removal was further elucidated by examining its relationships with both dissolved organic matter, dissolved manganese (Mn II), and redox potential. The flux of HgTD to the Bay of Puck was estimated to be 18.9 ± 6.3 g year⁻¹. The submarine groundwater discharge-derived mercury load is substantially smaller than atmospheric deposition and riverine discharge to the Bay of Puck. Thus, groundwater is a factor that dilutes the mercury concentrations in pore water and, as a result, dilutes the mercury concentrations in the water column.
اظهر المزيد [+] اقل [-]The Use of Voltammetry for Sorption Studies of Pb²⁺ from Aqueous Media using Schiff Base Immobilized Biologic Polymer Material النص الكامل
2013
Kucukkolbasi, Semahat | Erdoğan, Zehra Özden | Kocak, Nuriye | Şahin, Mustafa | Gubbuk, Ilkay Hilal
Adsorption by low-cost adsorbents and biosorbents is recognized as an effective and economic method for low-concentration heavy metal. The purpose of this study was to investigate the possibility of the utilization of N,N′-bis(2, 5-dihydroxybenzylidene)-1, 4-diaminobenzene (DHDB)-immobilized sporopollenin (Schiff base-immobilized sporopollenin, Sp-DHDB) as a sorbent for removal of lead (II) ion from aqueous solution. The effects of different parameters (such as sorbate concentration, sorbent dosage, and pH of the medium) were investigated by differential pulse anodic stripping voltammetry (DPASV) technique. The experimental data were analyzed by the Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) isotherms. Equilibrium data fitted well with the Freundlich model and the procedure developed was successfully applied for the removal of lead ions in aqueous solutions. This investigation reveals a new, simple, environmentally friendly, and cost-effective method for the removal of lead ions from aqueous solutions by a new Sp-DHDB material.
اظهر المزيد [+] اقل [-]