خيارات البحث
النتائج 1181 - 1190 من 7,351
Microplastics in plant-soil ecosystems: A meta-analysis النص الكامل
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
اظهر المزيد [+] اقل [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China النص الكامل
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
اظهر المزيد [+] اقل [-]Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems النص الكامل
2022
Hui, Cai | Liu, Bing | Du, Linna | Xu, Ligen | Zhao, Yuhua | Shen, Dongsheng | Long, Yuyang
Sulfidized nanoscale zero-valent iron (S-nZVI) is a promising material for in situ soil remediation. However, its transformation (i.e., aging) and effects on the microbial community in soil ecosystems are largely unknown. In this study, S-nZVI having low (S-nZVI (L)) and high sulfur-doping (S-nZVI (H)) were incubated in soil microcosms and bare nZVI was used as a control. Their aged products were characterized using microspectroscopic analyses and the changes in the corresponding soil microbial community were determined using high-throughput sequencing analyses. The results indicate that severe corrosion of both bare and S-nZVI occurred over 56 days of aging with significant morphological and mineral changes. Magnetite, lepidocrocite, and goethite were detected as the main aged products. In addition, sulfate ions, pyrite, and iron polysulfide were formed in the aged products of S-nZVI. Cr(VI) removal test results indicated that S-nZVI(L) achieved the best results after aging, likely because of the optimal FeS arrangement on its nanoparticle surfaces. The presence of nZVI and S-nZVI increased the abundance of some magnetotactic microorganisms and altered bacterial and fungal community structures and compositions. Moreover, the addition of S-nZVI enriched some bacterial and fungal genera related to sulfur cycling because of the presence of sulfide-bearing material. The findings reveal the transformation of S-nZVI during aging and its effects on microbial communities in soil ecosystems, thereby helping to the evaluation of S-nZVI application in soil remediation.
اظهر المزيد [+] اقل [-]Transport and fate of aqueous film forming foam in an urban estuary النص الكامل
2022
Katz, David R. | Sullivan, Julia C. | Rosa, Kevin | Gardiner, Christine | Robuck, Anna R. | Lohmann, Rainer | Kincaid, Chris | Cantwell, Mark G.
The deployment of aqueous film forming foams (AFFF) used for firefighting during emergencies and training often releases per- and polyfluoroalkyl substances (PFAS) into the environment. In October 2018, first responders in Providence, RI, USA applied an AFFF during a fuel spill. Due to the proximity of the incident to the upper reaches of Narragansett Bay (NB), an unknown quantity of gasoline and AFFF entered the estuary via surface runoff and stormwater drains. Water samples near the spill were collected approximately 15 h after the incident and analyzed for 24 PFAS. Minor increases in measured PFAS concentrations were observed relative to pre- and post-spill samples at monitoring sites near the incident, except 6:2-fluorotelomer sulfonate (6:2-FTS) that peaked post-spill (max 311 ng/L). After performing the total oxidizable precursor (TOP) assay on water samples and the AFFF concentrate, significant increases in perfluorocarboxylic acids (PFCAs) were observed. One compound, 6:2 fluorotelomer mercaptoalkylamido sulfonate (6:2-FTSAS), was identified as a major component of the AFFF used. Peak areas of 6:2-FTSAS and the degradation product 6:2-FTSAS-sulfoxide corresponded to observed increases in the TOP assay results and were useful as tracers of AFFF in surrounding waters. Elevated levels of PFAS at the time of sampling were limited to a confined area of the Providence River due to river flow and tidal action. Observed concentrations were also compared to hydrodynamic model results, and results confirmed rapid dissipation of AFFF components with distance from the spill. However, modeled results did not capture possible secondary releases of AFFF from local municipal stormwater and sewer infrastructure, as observational data suggest. The multiple lines of evidence of PFAS present in surface waters permitted a better assessment of the potential environmental impacts from products such as AFFF for which the chemical composition is largely unknown.
اظهر المزيد [+] اقل [-]Do industrial parks generate intra-heat island effects in cities? New evidence, quantitative methods, and contributing factors from a spatiotemporal analysis of top steel plants in China النص الكامل
2022
Meng, Qingyan | Hu, Die | Zhang, Ying | Chen, Xu | Zhang, Linlin | Wang, Zian
Industrial parks emit large amounts of anthropogenic heat and aggravate the urban heat island effect, which has become a severe environmental problem worldwide. Few studies explored if the warming effect generated by concentrated industrial facilities (i.e., steel plants in this study) produces an intra-heat island effect in urban built-up areas. Sufficient evidence of an industrial heat island (IHI) effect is lacking, and new quantitative methods are urgently needed to address these issues. Therefore, we proposed a new scheme to quantify the warming effect of large, heat-emitting urban objects versus complex surroundings, and the IHI effect was accordingly defined at a finer scale. This study separated the industrial park from other artificial lands and comprehensively estimated the IHI effects' spatiotemporal variation. The IHI intensities were measured based on varied natural and urbanized references, which provided new evidence for the existence of the IHI effect over space and seasons. The land surface temperature (LST) profiles delineated the downward trend in LST variation from inside to surroundings in the IHI cases on both spatial and temporal scales. The time-series analysis revealed that the IHI effects demonstrated more significant disparities regarding the LSTs between the industrial parks and their surrounding backgrounds during warm seasons than in cold seasons. And a more severe IHI effect was observed in spring and summer, and the weakest IHI intensity occurred in winter. Moreover, the IHI intensity is positively associated to the anthropogenic heat, indicating that the industrial activities contribute to the increased LSTs of the industrial park to a great extent. The rationale of the IHI effect can broaden insight for understanding how urban industrial heat sources influence the regional thermal environment, especially at a finer scale.
اظهر المزيد [+] اقل [-]The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands النص الكامل
2022
Zhang, Xiaoqing | Li, Ya | Ye, Jun | Chen, Zhihua | Ren, Dajun | Zhang, Shuqin
The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85–5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA₂₅₄) strongly correlated with SUVA₂₆₀ (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK₃ and logK₄ values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.
اظهر المزيد [+] اقل [-]Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments النص الكامل
2022
Yang, Juejie | Li, Guanghe | Sheng, Yizhi | Zhang, Fang
Excessive loading of nitrogen (N) and phosphorus (P) that leads to eutrophication mutually interacts with sediment microbial community. To unravel the microbial community structures and interaction networks in the urban river sediments with the disturbance of N and P loadings, we used high-throughput sequencing analysis and ecological co-occurrence network methods to investigate the responses of diversity and community composition of bacteria and archaea and identify the keystone species in river sediments. The alpha-diversity of archaea significantly decreased with the increased total nitrogen (TN), whereas the operational taxonomic unit (OTU) number of bacteria increased with the increase of available phosphorus (AP). The beta-diversity of archaea and bacteria was more sensitive to N content than P content. The relative abundance of predominant bacterial and archaeal taxa varied differently in terms of different N and P contents. Complexity and connectivity of bacteria and archaea interaction networks showed significant variations with eutrophication, and competition between bacteria became more significant with the increase of N content. The sensitive and the highest connective species (keystone species) were identified for different N and P loadings. Total carbon (TC), water content (WC), microbial alpha-diversity and interaction networks played pivotal roles in the N and P transformation in urban river sediments.
اظهر المزيد [+] اقل [-]A critical review on biochar-assisted free radicals mediated redox reactions on the transformation and reduction of potentially toxic metals: Occurrence, formation, and environmental applications النص الكامل
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Arif, Muhammad | Ahmed, Rafay | Ashraf, Aniqa | Song, Yu
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
اظهر المزيد [+] اقل [-]Anthropogenic CO2 emission reduction during the COVID-19 pandemic in Nanchang City, China النص الكامل
2022
Hu, Zheng | Griffis, Timothy J. | Xia, Lingjun | Xiao, Wei | Liu, Cheng | Xiao, Qitao | Huang, Xin | Yang, Yanrong | Zhang, Leying | Hou, Bo
China is the largest CO₂ emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO₂ emissions. However, large discrepancies still exist in the estimated anthropogenic CO₂ emission reduction rate caused by COVID-19 restrictions, with values ranging from 10% to 40% among different approaches. Here, we selected Nanchang city, located in eastern China, to examine the impact of COVID-19 on CO₂ emissions. Continuous atmospheric CO₂ and ground-level CO observations from January 1st to April 30th, 2019 to 2021 were used with the WRF-STILT atmospheric transport model and a priori emissions. And a multiplicative scaling factor and Bayesian inversion method were applied to constrain anthropogenic CO₂ emissions before, during, and after the COVID-19 pandemic. We found a 37.1–40.2% emission reduction when compared to the COVID-19 pandemic in 2020 with the same period in 2019. Carbon dioxide emissions from the power industry and manufacturing industry decreased by 54.5% and 18.9% during the pandemic period. The power industry accounted for 73.9% of total CO₂ reductions during COVID-19. Further, emissions in 2021 were 14.3–14.9% larger than in 2019, indicating that economic activity quickly recovered to pre-pandemic conditions.
اظهر المزيد [+] اقل [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid النص الكامل
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
اظهر المزيد [+] اقل [-]