خيارات البحث
النتائج 1191 - 1200 من 6,535
Morphology-Controlled Synthesis of α–Fe2O3 Nanocrystals Impregnated on g-C3N4–SO3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light
2020
Balu, Sridharan | Chen, Yi-Lun | Juang, R.-C. | Yang, Thomas C.-K. | Juan, Joon Ching
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe₂O₃ nanocrystals (α-Fe₂O₃–NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe₂O₃–NCs on g-C₃N₄ (α-Fe₂O₃–NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C₃N₄ accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe₂O₃–NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe₂O₃-HPs@CN-SAF and α-Fe₂O₃-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe₂O₃–NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C₃N₄ and α-Fe₂O₃, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe₂O₃–NCs@CN-SAF nanocomposites.
اظهر المزيد [+] اقل [-]Waste-to-energy nexus: A sustainable development
2020
Sharma, Surbhi | Basu, Soumen | Shetti, Nagaraj P. | Kamali, Mohammadreza | Walvekar, Pavan | Aminabhavi, Tejraj M.
An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of ‘simultaneous waste reduction and energy production’ technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.
اظهر المزيد [+] اقل [-]Determinants of personal exposure to fine particulate matter in the retired adults – Results of a panel study in two megacities, China
2020
Li, Na | Xu, Chunyu | Liu, Zhe | Li, Ning | Chartier, Ryan | Chang, Junrui | Wang, Qin | Wu, Yaxi | Li, Yunpu | Xu, Dongqun
This study aimed to investigate the relationship between outdoor, indoor, and personal PM₂.₅ exposure in the retired adults and explore the effects of potential determinants in two Chinese megacities. A longitudinal panel study was conducted in Nanjing (NJ) and Beijing (BJ), China, and thirty-three retired non-smoking adults aged 43–86 years were recruited in each city. Repeated measurements of outdoor-indoor-personal PM₂.₅ concentrations were measured for five consecutive 24-h periods during both heating and non-heating seasons using real-time and gravimetric methods. Time-activity and household characteristics were recorded. Mixed-effects models were applied to analyze the determinants of personal PM₂.₅ exposure. In total, 558 complete sets of collocated 24-h outdoor-indoor-personal PM₂.₅ concentrations were collected. The median 24-h personal PM₂.₅ exposure concentrations ranged from 43 to 79 μg/m³ across cities and seasons, which were significantly greater than their corresponding indoor levels (ranging from 36 to 68 μg/m³, p < 0.001), but significantly lower than outdoor levels (ranging from 43 to 95 μg/m³, p < 0.001). Indoor and outdoor PM₂.₅ concentrations were the strongest determinants of personal exposures in both cities and seasons, with RM² ranging from 0.814 to 0.915 for indoor and from 0.698 to 0.844 for outdoor PM₂.₅ concentrations, respectively. The personal-outdoor regression slopes varied widely among seasons, with a pronounced effect in BJ (NHS: 0.618 ± 0.042; HS: 0.834 ± 0.023). Ventilation status, indoor PM₂.₅ sources, personal characteristics, and meteorological factors, were also found to influence personal exposure levels. The city and season-specific models developed here are able to account for 89%–93% of the variance in personal PM₂.₅ exposure. A LOOCV analysis showed an R² (RMSE) of 0.80–0.90 (0.21–0.36), while a 10-fold CV analysis demonstrated a R² (RMSE) of 0.83–0.90 (0.20–0.35). By incorporating potentially significant determinants of personal exposure, this modeling approach can improve the accuracy of personal PM₂.₅ exposure assessment in epidemiologic studies.
اظهر المزيد [+] اقل [-]NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R. | Taggart, Mark A. | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
Despite the now well recognised impact of diclofenac on vultures across the Indian subcontinent, this non-steroidal anti-inflammatory drug (NSAID) was registered in 2013 for livestock treatment in Spain, Europe’s main vulture stronghold. We assessed the risk of exposure to diclofenac and nine other NSAIDs in avian scavengers in the Iberian Peninsula (Spain and Portugal) after the onset of diclofenac commercialization. We sampled 228 livestock carcasses from vulture feeding sites, primarily pig (n = 156) and sheep (n = 45). We also sampled tissues of 389 avian scavenger carcasses (306 Eurasian griffon vultures, 15 cinereous vultures, 11 Egyptian vultures, 12 bearded vultures and 45 other facultative scavengers). Samples were analysed by liquid chromatography with mass spectrometry (LCMS). Seven livestock carcasses (3.07%) contained NSAID residues: flunixin (1.75%), ketoprofen, diclofenac and meloxicam (0.44% each). NSAID residues were only detected in sheep (4.44%) and pig (3.21%) carcasses. Fourteen dead avian scavengers (3.60%) had NSAID residues in kidney and liver, specifically flunixin (1.03%) and meloxicam (2.57%). Flunixin was associated with visceral gout and/or kidney damage in three (0.98%) dead Eurasian griffons. To date, diclofenac poisoning has not been observed in Spain and Portugal, however, flunixin would appear to pose an immediate and clear risk. This work supports the need for well managed carrion disposal, alongside appropriate risk labelling on veterinary NSAIDs and other pharmaceuticals potentially toxic to avian scavengers.
اظهر المزيد [+] اقل [-]Occurrence, distribution, and risk assessment of pharmerciuticals in wastewater and open surface drains of peri-urban areas: Case study of Juja town, Kenya
2020
Muriuki, Cecilia W. | Home, Patrick G. | Raude, James M. | Ngumba, Elijah K. | Munala, Gerryshom K. | Kairigo, Pius K. | Gachanja, Anthony N. | Tuhkanen, Tuula A.
The occurrence of Active Pharmaceutical Ingredients (APIs) in the environment is becoming a major area of concern due to their undesirable effects on non-target organisms. This study investigated the occurrence and risk of contamination by five antibiotics and three antiretrovirals drugs in a fast-growing peri-urban area in Kenya, with inadequate sewer system coverage. Due to poor sewage connectivity and poorly designed decentralized systems, wastewater is directly released in open drains. Water and sediment samples were collected from open surface water drains, while wastewater samples were collected from centralized wastewater treatment plants (WWTP). Solid-phase extraction and ultrasonic-assisted extraction for the aqueous and sediment samples respectively were carried out and extracts analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) using isotopically labeled internal standards. APIs were observed with the detection frequency ranging from 36% to 100%. High mean concentrations of 48.7 μg L⁻¹, 108 μg L⁻¹, and 532 μg L⁻¹ were observed in surface drains for Lamivudine (3 TC), Sulfamethoxazole (SMX), Ciprofloxacin (CIP) respectively. Drain sediments also showed high concentrations of APIs ranging from 2.1 to 13,100 μg kg⁻¹. APIs in this study exceeded those observed in existing literature studies. JKUAT WWTP removal efficiencies varied from −90.68% to 72.67%. Total APIs emission load of the study area was 3550 mg d⁻¹ with WWTP effluent contributing higher loads (2620 mg d⁻¹) than surface water drains (640 mg d⁻¹). Zidovudine (ZDV), nevirapine (NVP), and trimethoprim (TMP) loads in drains, however, exceeded WWTP effluent. Low to high ecotoxicity risk of the individual APIs were observed to the aquatic environment, with high risks for the development of antibiotic resistance in microbiome as determined by the risk quotient (RQ) approach. Risk management through efficient wastewater collection, conveyance, and treatment is necessary to suppress the measured concentrations.
اظهر المزيد [+] اقل [-]Assessment of cadmium and lead contamination in rice farming soils and rice (Oryza sativa L.) from Guayas province in Ecuador
2020
Ochoa, Martín | Tierra, Wladimir | Tupuna-Yerovi, Diego Santiago | Guanoluisa, Danilo | Otero, Xosé Luis | Ruales, Jenny
Rice is the world’s most consumed and in-demand grain. Ecuador is one of the main rice-consuming countries in Latin America, with an average per capita consumption of 53.2 kg per year. Rice cultivation takes place under flooding conditions, which favors the mobilization and subsequent accumulation of heavy metals in the plant. This study’s principal objective was to evaluate the contamination of cadmium (Cd) and lead (Pb) in the rice cultivation system in the province of Guayas. To this end, extensive sampling of water, soil and rice grains was carried. Water samples were analyzed to determine physicochemical properties and concentrations of dissolved Cd and Pb. Physicochemical properties, total organic carbon (TOC), total content of nitrogen (N), iron (Fe), manganese (Mn), phosphorus (P), bioavailable phosphorus (P mehlich), Cd and Pb were determined in soil samples. In addition, to understand the dynamics of Cd and Pb mobility and bioavailability, an extraction of six randomly selected soil samples was carried out. The concentration values of the total Cd and Pb content in the rice cultivation system did not exceed the maximum recommended limit for soil, water and rice grains. However, 85% of the total Cd was in the soluble or exchangeable fraction of the soil, while the Pb was strongly bound to crystalline iron oxyhydroxides. It was established that the TOC, N, Fe, and P mehlich have a significant correlation (p < 0.05) with the overall concentration of Cd and Pb in the rice farming soil. The Cd and Pb present in rice do not represent a dietary health risk to the population of Ecuador.
اظهر المزيد [+] اقل [-]Integrated environmental vulnerability to oil spills in sensitive areas
2020
Monteiro, Caroline Barbosa | Oleinik, Phelype Haron | Leal, Thalita Fagundes | Marques, Wiliam Correa | Nicolodi, João Luiz | Lopes, Bruna de Carvalho Faria Lima
As the typical range of influence of oil spills surrounds urbanised and economically active areas, it is likely that fragile regions may not be part of the most vulnerable zones. This premise is remediated in this paper with the adoption of a vulnerability approach based on the integration of static and dynamic information, such as oil pollution susceptibility. Susceptibility is a poorly consolidated term and is often used as synonym for environmental sensitivity; it is considered here to be the distribution areas of oil slicks. To test the proposed approach, an integrated estimation of environmental vulnerability is carried out for an environmentally sensitive area in the south of Brazil by merging static data inherent to the medium with information of a dynamic nature related to trajectory, behaviour and the fate of oil at sea. Moreover, the oil pollution intensity and environmental sensitivity data in susceptible areas are addressed. Subsequently, the environmental vulnerability is estimated by integrating hazard maps, concentrations and losses of the mass of the oil slick, oil beaching time and the littoral sensitivity index hierarchy. Results will prove to be useful to highlight critical areas for which the highest levels of severity are expected, which can lead to improvements in decision-making processes to support oil-spill prevention, as well as improve response readiness, especially in developing countries that have historically under-protected their sensitive regions.
اظهر المزيد [+] اقل [-]Prediction and mitigation potential of anthropogenic ammonia emissions within the Beijing–Tianjin–Hebei region, China
2020
Guo, Xiurui | Ye, Zhilan | Chen, Dongsheng | Wu, Hongkan | Shen, Yaqian | Liu, Junfang | Cheng, Shuiyuan
Large ammonia (NH₃) emissions contribute approximately 8–30% to the fine particle pollution in China and highlight the need for understanding the emission trends and mitigation effects of NH₃ in the future. The purpose of this study is to predict the NH₃ emissions and analyze the mitigation potential up to year 2040 by scenario analysis based on the established new NH₃ emission inventory from anthropogenic sources for the Beijing–Tianjin–Hebei (BTH) region. The results showed that the total NH₃ emission in the BTH region was estimated at 966.14 Gg in 2016. Under the Business-as-Usual (BAU) scenario, the total NH₃ emissions in 2030 and 2040 would increase by 13% and 26% compared with 2016 levels, with average annual growth rates of 0.9% and 1.0%, respectively. Livestock will continue to dominate NH₃ emissions in the future, with the proportions of total emissions increasing from 57% in 2016 to 64% in 2030 and 68% in 2040. The share of the second-largest NH₃ emission source, synthetic fertilizer application, will decrease from 36% in 2016 to 31% in 2030 and 27% in 2040. Among five other sources, the largest change occurred in waste disposal, increasing notably by 3.31 times from 2016 to 2040 owing to rapid urbanization. Under the Combined Options (CO) scenario, the total NH₃ emissions could be reduced by as much as 34% by 2030 and 50% by 2040 compared with the BAU scenario, which is attributed to livestock (24% in 2030, 37% in 2040) and synthetic fertilizer application (10% in 2030, 13% in 2040), respectively. This study can give a reliable estimation of anthropogenic NH₃ emission in the BTH region during 2020–2040 and provide a valuable reference for effective mitigation measures and control strategies for policy makers.
اظهر المزيد [+] اقل [-]Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills – Composition, radiative forcing, and atmospheric heating
2020
Ramachandran, S. | Rupakheti, M.
This study reports comprehensive analysis of seasonal and inter-annual variations of aerosol properties (optical, physical and chemical) and radiative effects over Pokhara Valley in the foothills of central Himalayas in Nepal utilizing the high-quality multi-year columnar aerosol data observed recently from January 2010 to December 2017. This paper focusses on the seasonal and inter-annual variations of chemical (composition), and absorption properties of aerosols and their radiative effects. The single scattering albedo (SSA) either decreases as a function of wavelength or remains independent of wavelength. The seasonal mean aerosol absorption optical depth (AAOD) exhibits a behavior opposite to that of SSA. Carbonaceous aerosols (CA) dominate (≥60%) aerosol absorption during the whole year. Black carbon (BC) alone contributes >60% to AAODCA while brown carbon (BrC) shares the rest. The absorbing aerosol types are determined to be BC, and mixed (BC and dust) only. Dust as absorbing aerosol type is absent over the Himalayan foothills. The ARFSFC is ≥ -50 Wm⁻² except in monsoon almost every year. The ARFATM is ≥ 50 Wm⁻² during winter and pre-monsoon in all the years. ARFESFC, ARFETOA and ARFEATM follow a similar pattern as that of ARF. High values of ARFE at SFC, TOA and ATM (except during monsoon when values are slightly lower) suggest that aerosols are efficient in significantly modulating the incoming solar flux throughout the year. The annual average aerosol-induced atmospheric heating rate (HR) over Pokhara is nearly 1 K day⁻¹ every year during 8-year observation, and is highest in 2015 (∼2.5 K day⁻¹). The HR is about 1 K day⁻¹ or more over all the locations in IGP during the year. These quantitative results can be used as inputs in global/regional climate models to assess the climate impact of aerosols, including on regional temperature, hydrological cycle and melting of glaciers and snowfields in the region.
اظهر المزيد [+] اقل [-]Occurrence of short- and medium-chain chlorinated paraffins in soils and sediments from Dongguan City, South China
2020
Wu, Yang | Gao, Shutao | Ji, Bingjing | Liu, Zhiyang | Zeng, Xiangying | Yu, Zhiqiang
As a group of emerging organic pollutants, chlorinated paraffins (CPs) have attracted rising global attention due to their persistence and toxicity. In this study, we have investigated the concentration levels and profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in soils and sediments from Dongguan City, an industrial area in South China, and have also screened very short-chain chlorinated paraffins (vSCCPs) by means of ultra-high resolution liquid chromatograph coupled with an Orbitrap Fusion Tribrid mass spectrometer. The results indicated that total SCCP concentrations ranged from 6.75 to 993 ng/g (mean 172 ng/g) in soils and from 4.00 to 613 ng/g (mean 153 ng/g) in sediments, respectively. Higher MCCP levels were observed with a range of 23.9–2427 ng/g (mean 369 ng/g) in soils and 14.0–1581 ng/g (mean 493 ng/g) in sediments, respectively. The results indicated that MCCPs dominated over SCCPs in the studied region. The dominant homologues in soils and sediments were C₁₃Cl₆–₇ and C₁₄Cl₇–₈, C₁₃Cl₇, and C₁₄Cl₇–₈, respectively. Furthermore, six vSCCP homologues (C₈Cl₇–₈ and C₉Cl₅–₈) in soils and four vSCCPs (C₉Cl₅–₈) in sediments have been identified. Because of their higher detection frequencies, further studies should focus on the transformation mechanisms and toxicities of these vSCCPs in environmental media and biota.
اظهر المزيد [+] اقل [-]