خيارات البحث
النتائج 1201 - 1210 من 4,924
Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America
2019
Reichert, Gabriela | Hilgert, Stephan | Fuchs, Stephan | Azevedo, Júlio César Rodrigues
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
اظهر المزيد [+] اقل [-]Characterization of laboratory and real driving emissions of individual Euro 6 light-duty vehicles – Fresh particles and secondary aerosol formation
2019
Simonen, Pauli | Kalliokoski, Joni | Karjalainen, Panu | Rönkkö, Topi | Timonen, Hilkka | Saarikoski, Sanna | Aurela, Minna | Bloss, Matthew | Triantafyllopoulos, Georgios | Kontses, Anastasios | Amanatidis, Stavros | Dimaratos, Athanasios | Samaras, Zissis | Keskinen, Jorma | Maso, Miikka Dal | Ntziachristos, Leonidas
Emissions from passenger cars are one of major sources that deteriorate urban air quality. This study presents characterization of real-drive emissions from three Euro 6 emission level passenger cars (two gasoline and one diesel) in terms of fresh particles and secondary aerosol formation. The gasoline vehicles were also characterized by chassis dynamometer studies. In the real-drive study, the particle number emissions during regular driving were 1.1–12.7 times greater than observed in the laboratory tests (4.8 times greater on average), which may be caused by more effective nucleation process when diluted by real polluted and humid ambient air. However, the emission factors measured in laboratory were still much higher than the regulatory value of 6 × 1011 particles km−1. The higher emission factors measured here result probably from the fact that the regulatory limit considers only non-volatile particles larger than 23 nm, whereas here, all particles (also volatile) larger than 3 nm were measured. Secondary aerosol formation potential was the highest after a vehicle cold start when most of the secondary mass was organics. After the cold start, the relative contributions of ammonium, sulfate and nitrate increased. Using a novel approach to study secondary aerosol formation under real-drive conditions with the chase method resulted mostly in emission factors below detection limit, which was not in disagreement with the laboratory findings.
اظهر المزيد [+] اقل [-]Polydopamine-coated polyethylene sieve plate as an efficient and convenient adsorption sink for the bioaccessibility prediction of PAHs in soils
2019
Fan, Yu-Han | Li, Xiao-Shui | Mou, Xiao-Xuan | Qin, Shi-Bin | Qi, Shi-Hua
Bioaccessibility measurements of polycyclic aromatic hydrocarbons (PAHs) in soils are significant for exposure risk assessment. The current physicochemical methods require tedious operation processes, underestimate the actual risks, or are unsuitable for high organic content soils. In this work, an efficient and convenient method based on polydopamine-coated polyethylene sieve plate (PDA@PESP) and hydroxypropyl-β-cyclodextrin (HPCD) was developed to predict the bioaccessibility of PAHs in multi-type soils. The PDA@PESP can be prepared via in situ self-polymerization, allowing to extract PAHs from HPCD solution quantitatively and rapidly. When applied to evaluate the bioaccessibility with PDA@PESP as an adsorption sink and HPCD as a diffusive carrier, the proposed method can significantly improve the extractable fraction of PAHs compared to single HPCD extraction in particular for high organic carbon content soil and high-ring PAHs. The desorption kinetics data indicated that the method can predict the bioaccessible fraction of PAHs. In addition, the method predicted a satisfactory accumulation into earthworms (Eisenia fetida) with a slope statistically approximated to 1. A highly significant linear regression (R2 = 0.95) was also found between the proposed method and Tenax desorption in historically contaminated soils, demonstrating that the method is an efficient and convenient approach for the bioaccessibility prediction of PAHs in soils.
اظهر المزيد [+] اقل [-]Long-term effect of different Cu(II) concentrations on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor
2019
Li, Shanshan | Ma, Bingrui | Zhao, Changkun | She, Zonglian | Yu, Naling | Pan, Yunhao | Gao, Mengchun | Guo, Liang | Jin, Chunji | Zhao, Yangguo
The performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were investigated under 75-day exposure of different Cu(II) concentrations. Cu(II) at 0–5 mg/L had no distinct impact on the chemical oxygen demand (COD) and nitrogen removal, oxygen-uptake rate (OUR), nitrification and denitrification rate, and microbial enzymatic activity. The inhibitory effects of Cu(II) at 10 and 30 mg/L on the nitrogen removal rate, OUR, and microbial enzymatic activity of SBR increased with an increment in operation time due to the Cu(II) biotoxicity and the accumulation of Cu(II) in activated sludge. The changes of microbial reactive oxygen species production, lactate dehydrogenase release, catalase activity and superoxide dismutase activity demonstrated that Cu(II) at 10 and 30 mg/L broke the equilibrium between the oxidation and antioxidation processes in microbial cells and also damaged the cytomembrance integrity, which could affect the COD and nitrogen removal performance and change normal microbial cell morphology. The Cu(II) in the influent could be removed by the microbial absorption and accumulated in the activated sludge under long-term exposure. The microbial community displayed some distinct changes from 0 to 30 mg/L Cu(II). In contrast with 0 mg/L Cu(II), Nitrosomonas, Nitrospira and some denitrifying bacteria obviously decreased in relative abundance under long-term exposure of 10 and 30 mg/L Cu(II).
اظهر المزيد [+] اقل [-]Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity
2019
Zhang, Yan | Feng, Jianfeng | Gao, Yongfei | Liu, Xinyong | Zhu, Liang | Zhu, Lin
Accurately predicting the accumulation and toxicity of metals in organisms is a challenging work in ecotoxicology. Here, we developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult zebrafish exposed to Cd and Pb. The model included the gill, liver, intestine, gonad, carcass, and brain, which were linked by blood circulation in the PBTK process and by dynamic relationships between the target organ concentrations and mortality in the TD process. Results showed that the PBTK sub-model can accurately describe and predict the uptake, distribution and disposition kinetics of Cd and Pb in zebrafish. The exchange rates and the accumulation of the metals in the organs were significantly different. For Cd, the highest exchange rate was between blood and liver, and the greatest accumulation of Cd occurred in the liver. For Pb, the greatest accumulation occurred in the gill. The TD sub-model further indicated that metal concentrations in the gill may effectively act as more suitable indicator of Cd and Pb toxic effect than whole body or other organs. The proposed PBTK-TD model is helpful to understanding the fundamental processes by which zebrafish regulate the uptake and disposition of metal and to quantitatively predicting metal toxicity.
اظهر المزيد [+] اقل [-]Exploration of sources of OVOCs in various atmospheres in southern China
2019
Huang, Xiao Feng | Wang, Chuan | Zhu, Bo | Lin, Li-Liang | He, Ling-Yan
Oxygenated volatile organic compounds (OVOCs) are critical atmospheric ozone and secondary organic aerosol (SOA) precursors and radical sources, while understanding of OVOC sources in the atmosphere, especially with large anthropogenic emissions, still has large uncertainties. A high-sensitivity proton transfer reaction mass spectrometer (PTR-MS) was deployed in vastly different atmospheres in southern China, including an urban site (SZ-U), a regional site (NA-R), and a background site (NL-B). Four critical OVOCs, i.e., methanol, acetone, methyl ethyl ketone (MEK) and acetaldehyde, five groups of aromatic hydrocarbons, isoprene and acetonitrile were measured with a high time resolution. The featured relative abundance and diurnal variations of the OVOCs indicated that methanol, acetone and MEK had prominent contributions from urban industrial activities, while acetaldehyde was closely related to the photochemical formation at all three sites. The photochemical age-based parameterization method was improved locally and then applied to quantify different sources of daytime OVOCs: anthropogenic secondary and biogenic sources (together 60–73%) were always the dominant source for acetaldehyde in various atmospheres; in addition to a significant background for methanol, acetone and MEK, anthropogenic primary emissions (mostly industrial) were their dominant source at SZ-U (38–73%), while biogenic sources played the key role for them at NL-B (30–43%); biomass burning contributed a small fraction of 5–17% for the four OVOCs at the three sites.
اظهر المزيد [+] اقل [-]Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks
2019
Lu, Shaoyou | Wang, Ning | Ma, Shengtao | Hu, Xing | Kang, Li | Yu, Yingxin
This work aimed to determine the concentrations of parabens and triclosan (TCS) in shellfish from coastal waters of Shenzhen, South China. A method of isotope dilution with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine TCS and five paraben analogues, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BeP), in 186 shellfish samples covering eight species. Concentrations of parabens and TCS were 0.13–25.5 ng/g wet weight (ww) and <LOQ–6.51 ng/g ww, respectively, indicating their ubiquitous contamination in Shenzhen coastal waters. MeP was the most predominant paraben, followed by EtP and PrP. These three analogues accounted for more than 95% of the total concentrations of parabens. The “high” estimated daily intakes of parabens and TCS with the 95th percentage concentrations were estimated to be 2.15–26.1 and 0.41–10.3 ng/kg bw/day, respectively, much lower than the acceptable dietary intakes of parabens (1 × 10⁷ ng/kg bw/day) and TCS (200 ng/kg bw/day), indicating no significant human health risks from shellfish consumption in the studied region. To our knowledge, this is the first report on the occurrences of parabens and TCS in shellfish products from Shenzhen coastal waters.
اظهر المزيد [+] اقل [-]Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area
2019
Liu, Juan | Yin, Meiling | Zhang, Weilong | Tsang, Daniel C.W. | Wei, Xudong | Zhou, Yuting | Xiao, Tangfu | Wang, Jin | Dong, Xinjiao | Sun, Yubing | Chen, Yongheng | Li, Hui | Hou, Liping
Thallium (Tl) is a well-recognized hazardous heavy metal with very high toxicity. It is usually concentrated in sulfide minerals, such as pyrite (FeS₂), sphalerite (ZnS), chalcopyrite (CuS) and galena (PbS). Here, this study was carried out to investigate the indigenous microbial communities via 16S rRNA gene sequence analysis in typical surface sediments with various levels of Tl pollution (1.8–16.1 mg/kg) due to acid mine drainage from an active Tl-containing pyrite mining site in South China. It was found with more than 50 phyla from the domain Bacteria and 1 phyla from the domain Archaea. Sequences assigned to the genera Ferroplasma, Leptospirillum, Ferrovum, Metallibacterium, Acidithiobacillus, and Sulfuriferula manifested high relative abundances in all sequencing libraries from the relatively high Tl contamination. Canonical correspondence analysis further uncovered that the overall microbial community in this area was dominantly structured by the geochemical fractionation of Tl and geochemical parameters such as pH and Eh. Spearman's rank correlation analysis indicated a strong positive correlation between acidophilic Fe-metabolizing species and Tlₜₒₜₐₗ, Tlₒₓᵢ, and Tlᵣₑₛ. The findings clarify potential roles of such phylotypes in the biogeochemical cycling of Tl, which may facilitate the development of in-situ bioremediation technology for Tl-contaminated sediments.
اظهر المزيد [+] اقل [-]Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt)
2019
Olías, M. | Cánovas, C.R. | Basallote, M.D. | Macías, F. | Pérez-López, R. | González, R Moreno | Millán-Becerro, R. | Nieto, J.M.
In May 2017, a spill from La Zarza pit lake (SW Spain) resulted in the release of approximately 270,000 m3 of extremely acidic waters to the Odiel River. Around 780 × 103 kg of Fe, 170 × 103 kg of Al, 2.15 × 103 kg of As and high amounts of other trace metals and metalloids were spilled. The purpose of this study is to explain the causes, consequences and impacts of the mine spill on the receiving water bodies. To this end, an extensive sampling along the mine site, river and estuary as well as a hydrological model of the pit lake was performed. Around 53 km of the Odiel River's main course, which was already contaminated by acid mine drainage (AMD), were affected. The mine spill resulted in an incremental impact on the Odiel River water quality. Thus, dissolved concentrations of some elements increased in the river up to 450 times; e.g. 435 mg/L of Fe and 0.41 mg/L of As. Due to low pH values (around 2.5), most metals (e.g., Cu, Zn, Mn, Cd) were transported in the dissolved phase to the estuary, exhibiting a conservative behavior and decreasing their concentration only due to dilution. However, dissolved concentrations of Fe, Cr, Pb, Se, Sb, Ti, V and especially As decreased significantly along the river due to Fe precipitation and sorption/coprecipitation processes. At the upper zone of the estuary, a noticeable increment of metal concentrations (up to 77 times) was also recorded. The water balance illustrates the existence of groundwater inputs (at least 16% of total) to the pit lake, due probably to local infiltration of rainwater at the mining zone. The probable existence of an ancient adit connected to the pit lake indicates that potential releases could occur again if adequate prevention measures are not adopted.
اظهر المزيد [+] اقل [-]Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks
2019
Zheng, Yanling | Hou, Lijun | Liu, Min | Yin, Guoyu
Anaerobic ammonium oxidation (anammox) is recognized as an important bioprocess for nitrogen removal, yet little is known about the associated microbial communities in urban river networks which are intensively disturbed by human activity. In the present study, we investigated the community composition and abundance of anammox bacteria in the urban river network of Shanghai, and explored their potential correlations with nitrogen removal activities and the environmental parameters. High biodiversity of anammox bacteria was detected in the sediment of urban river networks, including Candidatus Brocadia, Scalindua, Jettenia, and Kuenenia. Anammox bacterial abundance ranged from 3.7 × 10⁶ to 3.9 × 10⁷ copies g⁻¹ dry sediment based on 16S rRNA gene, which was strongly correlated to the metabolic activity of anammox bacteria (P < 0.01). A strong linkage between anammox bacteria and denitrifiers was detected (P < 0.05), implying a potential metabolic interdependence between these two nitrogen-removing microbes was existed in urban river networks. Sediment ammonium (NH₄⁺) made a significant contribution to the anammox bacterial community-environment relationship, while anammox bacterial abundance related significantly with sediment total organic carbon (TOC) and silt contents (P < 0.05). However, no statistically significant correlation was observed between cell-specific anammox rate and the measured environmental factors (P > 0.05). In general, the community composition and abundance of anammox bacteria in different hierarchies of the river network was homogeneous, without significant spatial variations (P > 0.05). These results provided an opportunity to further understand the microbial mechanism of nitrogen removal bioprocesses in urban river networks.
اظهر المزيد [+] اقل [-]