خيارات البحث
النتائج 1241 - 1250 من 3,243
Bulk Deposition of Pesticides in a Canadian City: Part 1. Glyphosate and Other Agricultural Pesticides
2015
Farenhorst, Annemieke | Andronak, L. A. | McQueen, R. D. A.
Winnipeg is a city in the Canadian Prairies with a population of about 600,000. Like many other cities and towns in this region of Canada, the city is surrounded by agriculture. Weekly bulk deposition samples were collected from May to September in 2010 and 2011 and analyzed for 43 pesticides used in Prairie agriculture. Fourteen herbicides, five herbicide metabolites, two insecticides, and two fungicides were detected with 98.5 % of the samples containing chemical mixtures. Glyphosate is the most widely used pesticide in Prairie agriculture and accounted for 65 % of the total pesticide deposition over the 2 years. Seasonal glyphosate deposition was more than five times larger in 2011 (182 mm rain) than 2010 (487 mm rain), suggesting increased glyphosate particulate transport in the atmosphere during the drier year. The seasonal deposition of ten other frequently herbicides was significantly positively correlated with the amount of herbicides applied both in and around Winnipeg (r = 0.90, P < 0.001) and with agricultural herbicide use around Winnipeg (r = 0.63, P = 0.05), but not with agricultural herbicide use province wide (P = 0.23). Herbicides 2,4-D (2,4-dichlorophenoxyacetic acid), dicamba, and mecoprop had known urban applications and were more consistently detected in samples relative to bromoxynil and 2-methyl-4-chlorophenoxyacetic acid (MCPA) whose frequency of detections decreased throughout August and September. The Canadian Water Quality Guidelines for irrigation water were frequently exceeded for both dicamba (75 %) and MCPA (49 %) concentrations in rain. None of glyphosate concentrations in rain exceeded any of the Canadian Water Quality Guidelines established for this herbicide.
اظهر المزيد [+] اقل [-]Composts as Biosorbents for Decontamination of Various Pollutants: a Review
2015
Anastopoulos, Ioannis | Kyzas, George Z.
Biosorption is a low-cost green technology for water pollution decontamination. Recently, new adsorbent materials (raw or modified) were synthesized and tested in a wide variety of different pollutants. Among them, researchers pay attention on an alternative use of composts. The major use of composts is as soil amendments to improve the fertility of soils. For the first time in literature, the present review article gathers information about the applicability of compost materials as biosorbents in batch modes. For this purpose, equilibrium modeling and isotherm, kinetic, and thermodynamic studies were discussed in details. Moreover, many parameters such as temperature, pH, and contact time were also analyzed. The main pollutants studied in this work are dyes and heavy metals either in single- or multi-component systems.
اظهر المزيد [+] اقل [-]Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies
2015
Anagnostopoulos, Vasileios A. | Koutsoukos, P. G. (Petros G.) | Symeopoulos, Basil D.
Grape stalks, a low-cost agro-industrial by-product, were used for the first time as a biosorbent for the removal of uranium from aquatic systems. Basic operating conditions (effect of pH, biosorbent dose, uranium initial concentration, and kinetics) were investigated, and the sorption mechanism was explored. The proposed biosorbent’s efficiency to sequester uranium from different profile aquatic systems was assessed, as well as the potential uranium recovery. Biosoprtion performance increased progressively from pH 1.5 to 4.5, and uranium uptake was a rapid process, where film diffusion was the determining step. Maximum uptake ranged from 90 to 115 mg U(VI) g⁻¹at 15–33 °C, respectively. None of the commonly used adsorption models (Langmuir, Freundlich, Dubinin-Radushkevich) was able to describe the experimental isotherms, whereas the linear model seems to provide the best fit. Kinetic and thermodynamic data implied that both physical and chemical sorption are involved in the process. Species calculation experiments showed that only positively charged and uncharged uranium species can be retained on the biomass. Quantitative uranium recovery was achieved by mild desorbing agents at concentrations as low as 0.1 M. Therefore, grape stalks seem to be a promising biosorbent due to their high sequestration capacity even under high salinity and acidity conditions, low cost, and easy regeneration.
اظهر المزيد [+] اقل [-]Elimination of Selected Emerging Contaminants by the Combination of Membrane Filtration and Chemical Oxidation Processes
2015
Acero, Juan L. | Benitez, F Javier | Real, Francisco J. | Rodriguez, Elena
The elimination of five selected emerging contaminants (1-H-benzotriazole, N,N-diethyl-m-toluamide (DEET), chlorophene, 3-methylindole, and nortriptyline HCl) dissolved in different water matrices (surface water and secondary effluents) was carried out by sequential membrane filtration and chemical oxidation processes. First, a membrane filtration (ultrafiltration (UF) or nanofiltration(NF)) pre-treatment was conducted, and both permeate and retentate were afterwards treated by chemical oxidation, using ozone or chlorine. The application of UF and especially of NF provided a large volume of permeate, whose quality can be improved by a chemical treatment to completely remove residual contaminants except 1-H-benzotriazole. Chlorination and especially ozonation have demonstrated to be effective for the reduction of emerging contaminants in the concentrated stream, thus generating an effluent that might be recycled to the activated sludge treatment in the wastewater treatment plants (WWTP). In a second group of experiments, a chemical oxidation pre-treatment (by using ozone, chlorine, O₃/H₂O₂, ultraviolet (UV) radiation, or UV/H₂O₂) was applied followed by a nanofiltration process. Results of removals and rejection coefficients for the emerging contaminants showed that the chemical pre-treatment exerted a positive influence on the subsequent NF process, not only in terms of ECs removal but also of dissolved organic carbon content (DOC) reduction. While global removals higher than 97 % were reached for DEET, chlorophene, 3-methylindole, and nortriptyline HCl, lower values were obtained for 1-H-benzotriazole, especially for chlorine pre-treatment and in those water matrices with high content of natural organic matter. Therefore, both sequential treatments are promising to remove the selected micropollutants while reducing the chlorine doses needed to achieve final water disinfection.
اظهر المزيد [+] اقل [-]Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions
2015
Asokbunyarat, Varinporn | van Hullebusch, Eric D. | Lens, P. N. L. (Piet N. L.) | Annachhatre, A. (Ajit)
Investigations were undertaken to study sorption of heavy metal ions from aqueous solution onto coal bottom ash. X-ray diffraction analysis of coal bottom ash indicated presence of feldspar (KAlSi₃O₈–NaAlSi₃O₈–CaAl₂Si₂O₈), mullite (Al₆Si₂O₁₃), and magnetite (Fe²⁺Fe³⁺₂O₄). Toxicity characteristics leaching procedure (TCLP) revealed that heavy metal ions such as Fe(II), Fe(III), Mn(II), Cu(II), Zn(II), As(III), As(V), Pb(II), and Cd(II) could be leached out from coal bottom ash. Continuous column test with the bottom ash showed negligible heavy metal ion leach-out at pH 6.0, although at pH 4.2 some heavy metal ion leaching, mainly of Mn(II), was observed. Batch sorption studies with individual heavy metal ions (Fe(II), Cu(II), Zn(II) and Mn(II)) revealed that the heavy metal ion sorption onto coal bottom ash could be described by pseudo-second-order kinetics. Sorption isotherm studies revealed that Langmuir isotherm could adequately describe the heavy metal ion sorption onto coal bottom ash with maximum adsorption capacity (qₘ) ranging from 1.00 to 25.00 mg/g for various heavy metal ions. Removal of heavy metal ions by coal bottom ash is attributed to both adsorption and hydroxide precipitation of heavy metals due to the presence of different oxides (i.e., SiO₂, Al₂O₃, Fe₂O₃, CaO) in coal bottom ash.
اظهر المزيد [+] اقل [-]Long-Term Monitoring of a Lagooning Basin Used as Pretreatment Facility for a WTP: Effect on Water Quality and Description of Hydrological and Biological Cycles Using Chemometric Approaches
2015
Ruffino, Barbara | Fiore, Silvia | Genon, Giuseppe | Cedrino, Alessandro | Giacosa, Donatella | Bocina, Gianluca | Fungi, Martino | Meucci, Lorenza
The drinking water treatment plant (WTP) of the city of Turin (NW Italy), with a treatment capacity of 40 × 10⁶ m³/year, has a basin that is employed as a lagooning pretreatment facility. This study aims to assess the effect of the basin on several environmental parameters (temperature, dissolved oxygen (DO), turbidity, pH, chloride, nitrite, and total chlorophyll) of the river water before entering the WTP and monitor the changes inside the basin caused by the seasonal hydrological and biological cycles. Sampling was carried out on 16 dates over 3 years at the inlet and outlet channel of the basin and in five locations along three depth values (1, 6, and 12 m, i.e., at the bottom). The results of the 3-year monitoring campaign demonstrated that the basin had an effect on pH (p = 6.6 × 10⁻⁹), DO (p = 0.000072), turbidity (p = 0.011), and chlorophyll (p = 0.033). No significant changes regarding nitrite (p = 0.11), chloride (p = 0.94), and temperature (p = 0.66) were detected. The results gathered from the sampling campaign inside the basin demonstrated that, during the year, the basin experienced the following: two states of complete mixing in early spring and fall, when the differences in temperature between the surface and the bottom of the basin were less than 1 °C; a condition of late spring/summer stratification with a temperature difference between the surface and the bottom of 4–5 °C and a difference in DO, pH, and total chlorophyll concentration that increased throughout the spring season; and one or more states of summer circulation due to the weak stability of the warm season stratification. During the states of circulation, the persistent algae photosynthetic activity tended to cause a quick change in the concentration of DO, total chlorophyll, and pH value in the most superficial layer of the basin. The results of the principal component analysis (PCA) showed a strong direct relationship between the weight of the first component and the hydrodynamic states of the basin (stratification/circulation) and an inverse relationship between the weight of the second component and the intensity of photosynthetic activity of algae species.
اظهر المزيد [+] اقل [-]Impact of Simulated Water Level Regulation on Sediment Nutrient Release
2015
Tang, Xianqiang | Wu, Min | Yang, Wenjun | Scholz, Miklas
Representative sediment samples rich in nitrogen and phosphorus (both continuous and intermittently submerged) were used to conduct dynamic water level (WL) regulation experiments with various WL velocity modes (0, 3, and 6 cm/day). The experiments lasted three WL regulating cycles (6 months), and each single cycle included four WL dynamic phases: decline, stable, ascend, and re-stable. During the experiment, a greater nutrient stock caused higher nutrient release fluxes for continuously submerged sediments when compared to corresponding intermittently submerged sediments regardless of WL regulation. Moreover, continuous submerged sediment nutrient release showed a similar “U” pattern to the intermittently submerged sediment, and nutrient concentrations within the water phase generally increased with rising WL and decreased with dropping WL. Rapid WL regulation such as 6 cm/day promoted nitrogen release, and slow WL regulation at 3 cm/day favored phosphorus leaching. When three WL regulation cycles were finished, WL regulation of 6 cm/day resulted in 18 and 25 % decline of sediment mean organic matter (OM) content for continuous and intermittently submerged sediment, respectively. However, increased WL regulation cycles impacted on sediment nitrogen and phosphorus stock in different manners. For example, a WL regulation of 6 cm/day led to a 582 mg/kg decline and 322 mg/kg increase for intermittently submerged sediment in terms of total nitrogen (TN) and total phosphorus (TP) content, respectively. Results indicated that direct WL regulation insignificantly affected sediment nutrient release, but changed the overlying water conditions such as pH and redox potential (redox), and then indirectly changed the nutrient release dynamics.
اظهر المزيد [+] اقل [-]Effectiveness of an Eco-friendly Polymer Composite Sand-Fixing Agent on Sand Fixation
2015
Ma, Guofu | Ran, Feitian | Feng, Enke | Dong, Zhibao | Lei, Ziqiang
A novel and eco-friendly xanthan gum-g-poly(acrylic acid)/laterite (XG-g-PAA/laterite) organic-inorganic composite polymer used as chemical sand-fixing agent (CSFA) was successfully prepared by grafted copolymerization of natural XG, partially neutralized acrylic acid (NaA), and laterite in solution. FTIR spectra confirmed that NaA had been grafted onto XG chains, and the –OH groups of laterite participated in polymerization reaction. The influence of the content of CSFA on sand-fixing effect was investigated, and the results of the aging test indicated that the CSFA had remarkable water resistance, heat resistance, anti-freeze-thaw, and anti-ultraviolet aging performances, which could meet the requirement of application in the harsh desert environment. Moreover, it also showed excellent water-retaining and anti-evaporation properties.
اظهر المزيد [+] اقل [-]Detecting Small-Scale Variability of Trace Elements in a Shallow Aquifer
2015
Giambastiani, Beatrice M. S. | Colombani, Nicolò | Mastrocicco, Micòl
Groundwater samples collected from an unconfined shallow aquifer were analysed for major and trace element (TE) concentrations with the aim to investigate small-scale variations possibly linked to fertilizer residual products applied until 2004. The field site, located near Ferrara (Northern Italy), covers an area of 200 m²and was a former agricultural field then converted into a park and equipped with a grid of 13 monitoring wells. Three monitoring campaigns were carried out in June 2007, March and June 2009 in order to detect spatial and temporal variations in water quality. Groundwater nitrate, chloride, bromide and sulphate concentrations decreased with time indicating that the fertilizer plume was slowly replaced by unpolluted groundwater. However, the groundwater composition showed values of TEs (Fe, Mn, Al, As and Hg) above the recommended international and national guideline values. Dissolved TE concentrations varied randomly in the three campaigns, while TEs in the solid matrix did not show particular enrichment factors induced by fertilizer use. The data indicated that the dominant factor involved in determining small-scale spatial variability of TE concentrations in this shallow aquifer was the sediment-water interaction, while the temporal variation of TEs was driven by the organic matter leaching from the topsoil and by water table oscillations, which in turn drove the groundwater redox status. This study emphasizes the need of small-scale TE spatial resolution to discriminate between anthropogenic non-point sources of pollution (like fertilizers) and background concentrations.
اظهر المزيد [+] اقل [-]The Implications of Fe2O 3 and TiO 2 Nanoparticles on the Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of Humic Acid
2015
Salih, Hafiz H. | Sorial, George A. | Patterson, Craig L. | Speth, Thomas F.
The impact of Fe₂O₃and TiO₂nanoparticles (NPs) on the removal of trichloroethylene (TCE) in a granular activated carbon (GAC)-fixed bed adsorber was investigated in the presence of humic acid (HA). The surface charges of GAC and NPs were obtained in the presence and absence of HA with the NPs behaving similarly. Isotherm and column studies were conducted in the presence and absence of the NPs and HA. NPs had no effect on TCE adsorption during isotherm studies. However, in the column studies conducted with organic-free water, the presence of NPs resulted in a reduction in TCE capacity most likely due to pore blockage by aggregating NPs. This effect was completely mitigated in the presence of HAs that prevented an association between the GAC and the NPs, and between NPs. The presence of HA provided a high negative charge on the GAC and on the nanoparticles resulting in repulsive forces between the GAC and the NPs, and between NPs, thereby preventing pore blockage. Both Fe₂O₃and TiO₂NPs demonstrated that charge characteristics are more important than chemical characteristics. Pore-size distribution of the fresh and the spent GAC confirmed the adsorption data but points to some HA and NP interaction with the carbon.
اظهر المزيد [+] اقل [-]