خيارات البحث
النتائج 1261 - 1270 من 3,208
Field Measurement of Fluorescent Dissolved Organic Material as a Means of Early Detection of Leachate Plumes النص الكامل
2015
Graham, P. W. | Baker, A. | Andersen, M. S. | Acworth, I.
Early detection of landfill leachate plumes may minimise aquifer degradation and financial expenditure for the landfill operator. Current methods of landfill leachate monitoring typically include analysis of groundwater field parameters such as electrical conductivity (EC), coupled with laboratory analysis of a selection of major cations and anions. In many instances, background influences can mask the impact of leachate, which only becomes apparent once a significant impact has occurred. Here, we investigate the potential for changes in fluorescent dissolved organic material (FDOM) concentration to be used as an indicator of leachate impact. The research was undertaken in a fractured rock aquifer located downgradient of a local government-operated putrescible landfill in Central West NSW, Australia. Field measurement of groundwater FDOM was undertaken using an in situ fluorometer (FDOM probe) which provides a relative measurement of FDOM. To quantify the FDOM values, a bench fluorescence spectrophotometer was used to collect excitation/emission spectra. A plume of elevated FDOM and EC levels within the fractured rock system up to 600 m downgradient of the landfill was identified, whereas analysis of major cations and anions from boreholes within the plume did not detect leachate impacts above background. Excitation/emission matrices of groundwater from these locations confirmed that similar fluorescence signatures to those collected from the landfill were present. Photodegradation experiments were conducted to determine if fluorescent whitening agents (FWAs) were a component of the fluorescence signal. Observed photodegradation of 40 % compared to background (8 %) suggests that a component of the fluorescence signal can be attributed to FWAs. FDOM in groundwater therefore provides an indicator of low-level (up to 98 % dilution) leachate influence, and the identification of FWAs within groundwater can be considered confirmation of a leachate signal.
اظهر المزيد [+] اقل [-]Removal of Fluoride from Drinking Water Using Novel Adsorbent Magnesia-Hydroxyapatite النص الكامل
2015
Mondal, Poonam | George, Suja
In many parts of the world, fluoride in drinking water is responsible for notable public health issues. The present study is aimed to prepare a new adsorbent magnesia-hydroxyapatite (Mg-HAP) that can serve as a valuable defluoridating agent. Characterization of the synthesized adsorbent was done by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM), and Scanning electron microscope (SEM)/Energy-dispersive X-ray spectroscopy (EDX) analysis to reveal the bonding patterns, phase characteristics, and microstructural and morphological details. The influences of pH, adsorbent dose, contact time, and initial fluoride concentration and the effect of interfering anions were studied. The defluoridation capacity was evaluated to be 1.4 mg/g, and the adsorbent showed very good capability to remove fluoride from contaminated water over a wide range of pH. Equilibrium modeling was done, and the experimental data was fitted into Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Study of the kinetic data for the adsorption process revealed that it follows pseudo-second-order reaction. It also indicated that the intraparticle diffusion contributes to the rate-determining step in the process. The quality of treated water was analyzed for total dissolved solids (TDS), turbidity, residual calcium, residual phosphorus content, electrical conductivity, hardness, and total alkalinity. The results obtained were very promising and confirmed the prospects of usage of Mg-HAP in defluoridation of drinking water.
اظهر المزيد [+] اقل [-]Nitric Oxide Attenuates Oxidative Stress Induced by Arsenic in Lettuce (Lactuca sativa) Leaves النص الكامل
2015
Silveira, Neidiquele M. | de Oliveira, Juraci A. | Ribeiro, Cleberson | Canatto, Regiane A. | Siman, Luhan | Cambraia, José | Farnese, Fernanda
Lettuce plants were exposed to different toxic levels of arsenic (As) to induce an oxidative stress response, and the role of nitric oxide (NO) (provided as sodium nitroprusside (SNP)) as an attenuating agent of this stress condition was evaluated. Plants were treated with 50 μM of As with or without 100 μM SNP added to the nutrient solution. The hydrogen peroxide, superoxide anion, and malondialdehyde concentrations and enzymatic activities were measured. The increase in As concentration detected in the leaves was followed by a significant increase in H₂O₂ and malondialdehyde (MDA) concentrations. However, the presence of SPN promoted a reduction in the concentration of these oxidative agents and also reduced the translocation of As to the shoots. The enzymatic activities in the plants exposed to As were increased, which indicates the active participation of these enzymes in the reduction of oxidative stress induced by the metalloid. In the plants exposed to As and SNP, the enzymatic activities were not so high; this result was possibly related to the direct action of NO in scavenging the generated toxic metabolites and with the reduction in the translocation of the pollutant to the shoots. Lettuce and leaves of other vegetables are usually ingested, and this study shows an alternative to avoid human contamination with As.
اظهر المزيد [+] اقل [-]Biological Removal of Different Concentrations of Ibuprofen and Methylparaben in a Sequencing Batch Reactor (SBR) النص الكامل
2015
Londoño, Yudy Andrea | Peñuela, Gustavo A
This study evaluated the behavior of a sequencing batch reactor (SBR) at laboratory-scale in removing the emerging contaminants, ibuprofen (IBP) and methylparaben (MPB), at different concentrations. Individual experiments were carried out for each pollutant and they were divided into six stages of operation, which included starting, load variation, and interim periods of system stabilization. The treated wastewater was synthetic, and it included the pollutions MPB or IBP, glucose as a co-substrate, macronutrients, and micronutrients. The inoculum used to start the reactor was an aerobic sludge from an SBR system used in the treatment of domestic wastewater, which presented with high-content organic material and featured good sedimentation characteristics. The removal percentages of the two compounds at concentrations of 300, 500, and 1000 μg/L were not similar. For MPB, high removal percentages (>96 %) were obtained, while for IBP, decreasing removal percentages were found with increases in analyte concentration, exhibiting average values of 51 ± 15.3, 26 ± 16.6, and 16 ± 5.4 %. Following the removal of IBP, this behavior showed pronounced effects in biomass inhibition during exposure to high concentrations of the pollutant.
اظهر المزيد [+] اقل [-]PM10 Dispersion in Adelaide and Its Relationship with Rainfall النص الكامل
2015
Kāmarujjāmāna, Moḥ. | Aryal, Rupak | Beecham, Simon | Mulcahy, Dennis | Metcalfe, Andrew V. | Slattery, Samantha | Lee, Seoung Soo
The aim of this study is to use a range of statistical tools to assess particulate matter less than 10 μm (PM₁₀) in the atmosphere that has been measured daily at five locations in South Australia over a 7-year period. We consider a wind rose model to provide a graphical display of the frequency distribution of wind speed to explore the role of PM₁₀ accumulation over time. A generalised least squares technique with a first-order autoregressive model was applied to the realisation of average changes in PM₁₀, and these were assessed at the 5 % significance level. This study found the change in variability of PM₁₀ concentration over time. The pre-whitened PM₁₀ series were considered as realisations of white noise using correlogram plots. Furthermore, a robust regression technique involving wet (>0.5-mm rainfall) and dry properties (<0.5-mm rainfall) was used to assess the influence of rainfall on PM₁₀ distributions for the city of Adelaide.
اظهر المزيد [+] اقل [-]Chemical Variability of PM10 and PM2.5 in Southwestern Rural Nevada, USA النص الكامل
2015
Engelbrecht, Johann P. | Kavouras, Ilias G. | Shafer, David S. | Campbell, Dave | Campbell, Scott | McCurdy, Greg | Kohl, Steven D. | Nikolich, George | Sheetz, Larry | Gertler, Alan W.
The levels and composition of particulate matter in Ash Meadows National Wildlife Refuge (NWR) that hosts the only population of the endangered Devil’s Hole pupfish (Cyprinodon diabolis) were examined to obtain baseline air quality information. PM₁₀ and PM₂.₅ mass concentrations were measured using continuous monitors over a period of 12 months. In addition, integrated PM₁₀ and PM₂.₅ filter samples were collected and a subset chemically analyzed for elements, ions, elemental carbon, and organic carbon. The average filter-based PM₁₀ (10.9 μg m⁻³) and PM₂.₅ (5.1 μg m⁻³) levels at Ash Meadows NWR are similar to those previously measured at rural and continental background sites in the southwestern USA. Mineral dust accounted for the largest percentage of aerosol mass, with the highest concentrations being measured during fall months of 2009. Elemental and organic carbon levels were generally low, except for August 29, 2009. During this event, transport of wildfire smoke was suggested, by the passage of air masses over wildfires in California, Utah, and Arizona. Ammonium sulfate varied with season, with the highest concentrations in spring and the lowest in fall and winter. Halite (NaCl) quantities were very low, except for the filter samples collected during a windy period on October 4, 2009 indicating the possible contribution of alkaline playa dust upwind of the site. Above average concentrations of crustal calcium compounds, including carbonates and gypsum, were measured in the PM₁₀ sample collected on November 9, 2009 as well as the two preceding months, ascribed to wind-driven dusty conditions prevailing throughout the late summer and fall of 2009.
اظهر المزيد [+] اقل [-]Three Decadal Inputs of Nitrogen and Phosphorus from Four Major Coastal Rivers to the Summer Hypoxic Zone of the Northern Gulf of Mexico النص الكامل
2015
He, Songjie | Xu, Y Jun
Nutrient enrichment is considered one of the most important causes for summer hypoxic conditions in the northern Gulf of Mexico (NGOM) off the Louisiana coast. While many studies on nutrient inputs from the large Mississippi-Atchafalaya River System have been conducted, little is known about nutrient inputs from other coastal rivers in Louisiana. In this study, we utilized long-term (1980–2009) records on river discharge and nutrient concentrations of four major Louisiana coastal rivers—the Sabine, Calcasieu, Mermentau, and Vermilion—to estimate daily, monthly, and annual inflows of nitrate and nitrite nitrogen (NO₃ + NO₂), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) into the NGOM. The three-decade-long nutrient inflows from these rivers were analyzed for their seasonal fluctuations, interannual variabilities, and decadal trends. Fluxes of NO₃ + NO₂, TKN, and TP for these river basins were estimated to assess land use effects on riverine nutrients. Our study found that the four coastal rivers discharged each year a considerably large amount of NO₃ + NO₂ (total of 1755 t), TKN (12,208 t), and TP (1833 t) into the NGOM, with a peak input of nitrogen during the spring. The Mermentau and Vermilion Rivers, which drain intensive agriculture areas, had significantly higher NO₃ + NO₂, TKN, and TP concentrations when compared with the Sabine and Calcasieu Rivers, which drain forest-pasture-dominated lands. The fluxes of NO₃ + NO₂, TKN, and TP from the Mermentau River Basin (156 kg km⁻² year⁻¹ NO₃ + NO₂, 942 kg km⁻² year⁻¹ TKN, and 206 kg km⁻² year⁻¹ TP) and the Vermilion River Basin (374, 1078, and 360) were much higher than those combined from the Sabine and Calcasieu River Basins (66, 710, and 62). These findings fill a major knowledge gap concerning the quantity and characteristics of nitrogen and phosphorus transport from coastal watersheds to North America’s largest hypoxic zone.
اظهر المزيد [+] اقل [-]Decolorization of Textile Reactive Dyes and Effluents by Biofilms of Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 Isolated from the Peruvian Rainforest النص الكامل
2015
Cerrón, Luis M. | Romero-Suárez, David | Vera, Nadia | Ludeña, Yvette | Villena, Gretty K. | Gutiérrez-Correa, Marcel
The textile industry creates environmental problems due to the release of highly polluting effluents containing substances from different stages of dyeing that are resistant to light, water, and various chemicals, and most of them are difficult to decolorize because of its synthetic origin. The biological degradation of dyes is an economical and environmentally friendly alternative. The aim of this work was to use biofilms of basidiomycete fungi isolated from the Peruvian rainforest for the decolorization of synthetic reactive dyes, considering the advantages of these systems which include better contact with the surrounding medium, resistance to chemical and physical stress, and higher metabolic activity. Among several isolates, two were selected for their capacity of rapid decolorization of several dyes and their biofilm-forming ability. These strains were molecularly identified as Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 and used in biofilm cultivation for the decolorization of six reactive dyes and textile effluents. Azo dyes were moderately decolorized by both strains, but Remazol Brilliant Blue R (anthraquinone) and Synozol Turquoise Blue HF-G (phthalocyanine) were highly decolorized (97 and 80 %, respectively) by T. polyzona LMB-TM5. Degradation products were found by HPLC analysis. Simulated effluents made of a mixture of six dyes were moderately decolorized by both strains, but a real textile effluent was highly (93 %) decolorized by T. polyzona LMB-TM5. In summary, T. polyzona LMB-TM5 was more efficient than Ceriporia sp. LMB-TM1 for the decolorization of textile dyes and effluents at high initial rates enabling the development of in-plant continuous biofilm processes.
اظهر المزيد [+] اقل [-]Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment النص الكامل
2015
Montenegro, Andrea C. | Ferreyroa, Gisele V. | Parolo, María E. | Tudino, Mabel B. | Lavado, Raúl S. | Molina, Fernando V.
Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment النص الكامل
2015
Montenegro, Andrea C. | Ferreyroa, Gisele V. | Parolo, María E. | Tudino, Mabel B. | Lavado, Raúl S. | Molina, Fernando V.
Copper bioavailability, specially to plants, is strongly dependent on its chemical form, as for most metals. Copper-contaminated soil can be treated in situ by the addition of minerals such as Na-bentonite, which mixed with surface soil, can transform this pollutant to non-bioavailable forms. In this work, shelter experiments were conducted to study the time evolution of Cu speciation, in pristine soil as well as in amended one. A selective sequential extraction method was employed to determine the metal speciation in the samples. The results show that the major metal fraction is the organic matter-bound one, whereas the exchangeable fraction is very low, even the first day after Cu addition. The time evolution shows a slow decrease of the organic-bound Cu and a corresponding increase of the most stable mineral fractions. With the addition of Na-bentonite to copper-contaminated soil, the most stable mineral fractions increase whereas the organic-bound one decreases, showing essentially similar time dependence of the several metal fractions. Sodium bentonite could be effectively used for remediation of soils polluted with Cu.
اظهر المزيد [+] اقل [-]Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment النص الكامل
2015
Montenegro, Andrea Constanza | Ferreyroa, Gisele Veronica | Parolo, Maria Eugenia | Tudino, Mabel Beatriz | Lavado, Raul Silvio | Molina, Fernando Víctor
Copper bioavailability, specially to plants, is strongly dependent on its chemical form, as for most metals. Copper-contaminated soil can be treated in situ by the addition of minerals such as Na-bentonite, which mixed with surface soil, can transform this pollutant to non-bioavailable forms. In this work, shelter experiments were conducted to study the time evolution of Cu speciation, in pristine soil as well as in amended one. A selective sequential extraction method was employed to determine the metal speciation in the samples. The results show that the major metal fraction is the organic matter-bound one, whereas the exchangeable fraction is very low, even the first day after Cu addition. The time evolution shows a slow decrease of the organic-bound Cu and a corresponding increase of the most stable mineral fractions. With the addition of Na-bentonite to copper-contaminated soil, the most stable mineral fractions increase whereas the organic-bound one decreases, showing essentially similar time dependence of the several metal fractions. Sodium bentonite could be effectively used for remediation of soils polluted with Cu. | Fil: Montenegro, Andrea Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina | Fil: Ferreyroa, Gisele Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina | Fil: Parolo, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energias Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energias Alternativas; Argentina | Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina | Fil: Lavado, Raul Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina | Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
اظهر المزيد [+] اقل [-]Effect of Combined Microwave-Ultrasonic Pretreatment of Real Mixed Sludge on the Enhancement of Anaerobic Digester Performance النص الكامل
2015
Yeneneh, Anteneh Mesfin | Kayaalp, Ahmet | Sen, Tushar Kanti | Ang, Ha Ming
The anaerobic biodegradability of combined microwave-ultrasonic pretreated thickened excess activated sludge (PTEAS) mixed with raw primary sludge (PS) was investigated in this study. The pretreatment resulted in the enhancement of mesophilic anaerobic digester performance which in turn improved biogas production capacity and quality, total and volatile solid reduction, dewaterability, protein solubilisation and significant reduction of pathogens to produce class A biosolid. This study presented the results of two continuously stirred mesophilic anaerobic digesters charged with various proportions of a mixture of PTEAS and PS similar to the large-scale industrial practice. Digester 1 was charged with 75 % PTEAS and 25 % PS, while digester 2 was fed with 25 % PTEAS and 75 % PS. The methane production was 122 mL CH₄/g total chemical oxygen demand for digester 2 after 20 days of anaerobic digestion. This amount further increased for both digesters with digestion time. The biogas quality in terms of methane to carbondioxide ratio (CH₄/CO₂) was significantly improved for digester 1 compared with digester 2 after 20 days of digestion. Volatile solid reduction of 76 and 57 % was achieved for digester 1 and digester 2 respectively after the same 20 days of digestion. The CH₄/CO₂ ratio reached 2.2:1 and 1.1:1 after 20 days of digestion for digester 1 and digester 2, respectively. Higher percentage of PTEAS increases the digestion kinetics, the methane production capacity and the biogas quality. Furthermore, total coliform reduction of 84 and 44 % was achieved for digester 1 and digester 2 respectively after 22 days of digestion. Hydrolysis rate and biochemical methane production were improved for both digesters based on the results of Gompertz kinetic model and the hydrolysis rate constants as determined by model fitting of the experimental data.
اظهر المزيد [+] اقل [-]