خيارات البحث
النتائج 1261 - 1270 من 8,010
Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos النص الكامل
2021
Lee, Hyojin | Ko, Eun | Shin, Sooim | Choi, Moonsung | Kim, Ki-Tae
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
اظهر المزيد [+] اقل [-]Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies النص الكامل
2021
Wu, Jiansheng | Wang, Yuan | Liang, Jingtian | Yao, Fei
Particulate matter with an aerodynamic equivalent dimeter less than 2.5 μm (PM₂.₅) and ozone (O₃) are major air pollutants, with coupled and complex relationships. The control of both PM₂.₅ and O₃ pollution requires the identification of their common influencing factors, which has rarely been attempted. In this study, land use regression (LUR) models based on the least absolute shrinkage and selection operator were developed to estimate PM₂.₅ and O₃ concentrations in China's Pearl River Delta region during 2019. The common factors in the tradeoffs between the two air pollutants and their synergistic effects were analyzed. The model inputs included spatial coordinates, remote sensing observations, meteorological conditions, population density, road density, land cover, and landscape metrics. The LUR models performed well, capturing 54–89% and 42–83% of the variations in annual and seasonal PM₂.₅ and O₃ concentrations, respectively, as shown by the 10-fold cross validation. The overlap of variables between the PM₂.₅ and O₃ models indicated that longitude, aerosol optical depth, O₃ column number density, tropospheric NO₂ column number density, relative humidity, sunshine duration, population density, the percentage cover of forest, grass, impervious surfaces, and bare land, and perimeter-area fractal dimension had opposing effects on PM₂.₅ and O₃. The tropospheric formaldehyde column number density, wind speed, road density, and area-weighted mean fractal dimension index had complementary effects on PM₂.₅ and O₃ concentrations. This study has improved our understanding of the tradeoff and synergistic factors involved in PM₂.₅ and O₃ pollution, and the results can be used to develop joint control policies for both pollutants.
اظهر المزيد [+] اقل [-]Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird النص الكامل
2021
Smith, Reyd A. | Gagné, Maryse | Fraser, Kevin C.
Artificial light at night (ALAN) is increasing at a high rate across the globe and can cause shifts in animal phenology due to the alteration of perceived photoperiod. Birds in particular may be highly impacted due to their use of extra-retinal photoreceptors, as well as the use of photoperiodic cues to time life events such as reproduction, moult, and migration. For the first time, we used light-logging geolocators to determine the amount of ALAN experienced by long-distance migratory songbirds (purple martin; Progne subis) while at their overwintering sites in South America to measure its potential relationship with spring migration timing. Almost a third of birds (48/155; 31%) were subjected to at least one night with ALAN over 30 days prior to spring migration. Birds that experienced the highest number of nights (10+) with artificial light departed for spring migration on average 8 days earlier and arrived 8 days earlier at their breeding sites compared to those that experienced no artificial light. Early spring migration timing due to pre-migration ALAN experienced at overwintering sites could lead to mistiming with environmental conditions and insect abundance on the migratory route and at breeding sites, potentially impacting survival and/or reproductive success. Such effects would be particularly detrimental to species already exhibiting steep population declines such as purple martins and other migratory aerial insectivores.
اظهر المزيد [+] اقل [-]Effect of oil pollution on the ecological condition of soils and bottom sediments of the arctic region (Yakutia) النص الكامل
2021
Lifshits, Sara | Glyaznetsova, Yuliya | Erofeevskaya, Larisa | Chalaya, Olga | Zueva, Iraida
Oil and petroleum products are known to be among the most widespread soil pollutants. The risk of emergencies is sure to increase greatly in conditions of abnormally low temperatures. Oil and oil products are not only toxic to the environment, but can also have a negative impact on the state of the permafrost zone, accelerating the processes of permafrost degradation. The goal of the research was to study the soils and bottom sediments for oil pollution in the Arctic region of Yakutia. The research was carried out with using the complex of geochemical and microbiological methods of analysis. It had shown that at present oil pollution was mainly concentrated on the objects bearing a high technogenic load. However, some migration of hydrocarbons was observed with melt, seasonal melt and rainwaters, as a result of which the natural background of the nearby territories became technogenic character. In the Arctic conditions for the first time according to the obtained data on geochemical and microbiological studies oxidative destruction of oil pollutants in soil occurred mainly under the influence of physic and chemical environmental factors, not by microbial oxidation. Sluggish processes of mineralization of organic residues and the transformation of oil pollutants by the type of putrefaction led to the colonization of oil-polluted soils of the Arctic with putrefying and pathogenic microorganisms. The purpose of further research will be studying the possibility of intensification of soil remediation processes of technologically disturbed soils at abnormally low temperatures.
اظهر المزيد [+] اقل [-]Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol النص الكامل
2021
Yang, Qian | Xu, Weihao | Luan, Tiangang | Pan, Tianle | Yang, Lihua | Lin, Li
Estuarine ecosystems near mega-cities are sinks of anthropogenic endocrine disrupting chemicals (EDCs). As the most important primary producer, indigenous microalgae and their secreted extracellular polymeric substances (EPSs) might interact with EDCs and contribute to their fate and risk. Tetraselmis sp. is a representative model of estuarine microalga, for which EDC toxicity and its effects on EPS synthesis have rarely been studied. Through microalgal isolation, algal cell growth tests, EDC removal and the characterization of related EPS profiles, the present work intends to clarify the comparative responses of Tetraselmis sp. to nonylphenol (NP), bisphenol A (BPA) and 17α-ethinylestradiol (EE₂). The results showed that the half inhibitory concentration on cell growth was 0.190–0.313 mg/dm³ for NP, which was one order of magnitude lower than the comparable values for BPA and EE₂ at 2.072–3.254 mg/dm³. Regarding chlorophyll, NP induced its degradation, EE₂ led to its decreased production, and BPA had no obvious effect. Under EDC stress, only the concentrations of colloidal polysaccharides and proteins responded dose-dependently to EE₂. Except for the colloidal fraction in the EE₂ treatment group, the increase in neutral monosaccharides, especially glucose and galactose, was a common response to EDCs. Compared to the recalcitrant BPA, NP underwent abiotic degradation in alga-free water, and EE₂ could be biodegraded in water containing this microalga. The chemical-specific responses of cell growth, chlorophyll and related EPS profiles were driven by the different fates of EDCs, and the underlying mechanism was further discussed. The results obtained in the present work are of critical importance for understanding the fate and effects of different EDCs mediated by microalgae and their related EPSs.
اظهر المزيد [+] اقل [-]Distribution of eight organophosphorus pesticides and their oxides in surface water of the East China Sea based on high volume solid phase extraction method النص الكامل
2021
Xiao, Kaiyan | Zhu, Ningzheng | Lu, Zhibo | Zheng, Hongyuan | Cui, Chao | Gao, Yuan | Gao, Yunze | Meng, Xiangzhou | Liu, Yanguang | Cai, Minghong
In this study, we reported the occurrence of eight organophosphorus pesticides (OPPs) in the East China Sea. Forty samples were collected and analysed with a high volume solid phase extraction method (Hi-throat/Hi-volume SPE) in the early summer of 2020. All the target OPPs were detected in the surface water at one or more stations in the East China Sea, and the concentrations of ΣOPPs were in the range 0.0775–3.09 ng/L (mean: 0.862 ± 0.624 ng/L). Terbufos sulfone and fenthion were the main pollutants in this area, probably resulting from pesticide use in China and other countries. The off-shore input from coastal regions was suggested to be a major source of OPP pollution in the East China Sea, and the movement of ocean currents played an important role in their transportation because around 0.86 t OPPs passed through the Tsushima Strait from the East China Sea each month. An ecological risk assessment showed that these OPPs presented a high risk to species in the East China Sea, whereas they posed no health risk to humans under both the median and high exposure scenario.
اظهر المزيد [+] اقل [-]Estimating hourly full-coverage PM2.5 over China based on TOA reflectance data from the Fengyun-4A satellite النص الكامل
2021
Mao, Feiyue | Hong, Jia | Min, Qilong | Gong, Wei | Zang, Julin | Yin, Jianhua
It is challenging to retrieve hourly ground-level PM₂.₅ on a national scale in China due to the sparse site measurements and the limited coverage of Low Earth Orbit (LEO) satellite observations. The new geostationary meteorological satellite of China, Fengyun-4A (FY-4A), provides a unique opportunity to fill this gap. In this study, the Random Forest (RF) algorithm was applied to retrieve hourly PM₂.₅ of China directly from FY-4A Top-of-Atmosphere (TOA) reflectance data. A one-year PM₂.₅ retrieval shows a strong agreement to ground-based measurements, with the averaged R² approaching 0.92, while the RMSE was only 10.0 μg/m³. An analysis of the regional differences of the performance and the dependency on satellite Viewing Zenith Angle (VZA) show that sparse measurements, high VZA, and solar zenith angle (SZA) are the primary sources of the uncertainty. The use of the FY-4A improved 17% spatial coverage compared to the Himawari-8-based PM₂.₅ retrievals, enabling full-coverage, hourly PM₂.₅ monitoring over China, and potentially could improve PM₂.₅ predictions from air quality models after data assimilation.
اظهر المزيد [+] اقل [-]First evaluation of the periphyton recovery after glyphosate exposure النص الكامل
2021
Vera, María Solange | Trinelli, María Alcira
The potential environmental risk of glyphosate has promoted the need for decontamination of glyphosate-polluted water bodies. These treatments should be accompanied by studies of the recovery potential of aquatic communities and ecosystems. We evaluated the potential of freshwater periphyton to recover from glyphosate exposure using microcosms under laboratory conditions. Periphyton developed on artificial substrates was exposed to 0.4 or 4 mg l⁻¹ monoisopropylamine salt of glyphosate (IPA) for 7 days, followed by translocation to herbicide-free water. We sampled the community 1, 2 and 3 weeks after the transfer. Dry weight, ash-free dry weight, chlorophyll a, and periphyton abundances were analysed. The periphyton impacted with the lowest IPA concentration recovered most of the structural parameters within 7 days in clean water, but the taxonomic structure did not entirely recover towards the control structure. Periphyton exposed to 4 mg IPA l⁻¹ could not recover during 21 days in herbicide-free water, reaching values almost four times higher in % of dead diatoms and four times lower in ash-free dry weight concerning the control at the end of the study. Results suggest a long-lasting effect of the herbicide due to the persistence within the community matrix even after translocating periphyton to decontaminated water. We conclude that the exposure concentration modulates the recovery potential of IPA-impacted periphyton. The current research is the first to study the recovery in glyphosate-free water of periphyton exposed to the most commonly used herbicide in the world. Finally, we highlight the need for more studies focused on the recovery potential of freshwater ecosystems and aquatic communities after glyphosate contamination.
اظهر المزيد [+] اقل [-]Inhibition of phosphate sorptions on four soil colloids by two bacteria النص الكامل
2021
Hong, Zhi-neng | Yan, Jing | Lu, Hai-long | Jiang, Jun | Li, Jiu-yu | Xu, Ren-kou
Ion sorption on soil and sediment has been reported to be potentially affected by bacteria which may interact both physically and chemically with solid surfaces. However, whether and how bacteria affect the sorption of inorganic phosphate (P) on soil colloids remains poorly known. Here, we comparably investigated the P sorption on four soil colloids (three highly weathered soils including two Oxisols and one Ultisol and one weakly weathered soil Alfisol) and their complexes with Bacillus subtilis and Pseudomonas fluorescens. Batch experiments showed a notable reduction in P sorption on the colloids of highly weathered soils by the two bacteria at varying P concentrations and pHs; whereas that on the colloids of Alfisol appeared to be unaffected by the bacteria. The inhibitory effect was confirmed by both greater decline in P sorption at higher bacteria dosages and the ability of the bacteria to desorb P pre-adsorbed on the colloids. Further evidence was given by isothermal titration calorimetric experiments which revealed an alteration in enthalpy change caused by the bacteria for P sorption on Oxisol but not for that on Alfisol. The B. subtilis was more efficient in suppressing P sorption than the P. fluorescens, indicating a dependence of the inhibition on bacterium type. After association with bacteria, zeta potentials of the soil colloids decreased considerably. The decrease positively correlated with the decline in P sorption, regardless of soil and bacterium types, demonstrating that the increment in negative charges of soil colloids by bacteria probably contributed to the inhibition. In addition, scanning electron microscopic observation and the Derjaguin–Landau–Verwey–Overbeek theory prediction suggested appreciable physical and chemical interactions between the bacteria and the highly weathered soil colloids, which might be another contributor to the inhibition. These findings expand our understandings on how bacteria mobilize legacy P in soils and sediments.
اظهر المزيد [+] اقل [-]An empirical model to estimate ammonia emission from cropland fertilization in China النص الكامل
2021
Wang, Chen | Cheng, Kun | Ren, Chenchen | Liu, Hongbin | Sun, Jianfei | Reis, Stefan | Yin, Shasha | Xu, Jianming | Gu, Baojing
Ammonia (NH₃) volatilization is one of the main pathways of nitrogen loss from cropland, resulting not only in economic losses, but also environmental and human health impacts. The magnitude and timing of NH₃ emissions from cropland fertilizer application highly depends on agricultural practices, climate and soil factors, which previous studies have typically only considered at coarse spatio-temporal resolution. In this paper, we describe a first highly detailed empirical regression model for ammonia (ERMA) emissions based on 1443 field observations across China. This model is applied at county level by integrating data with unprecedented high spatio-temporal resolution of agricultural practices and climate and soil factors. Results showed that total NH₃ emissions from cropland fertilizer application amount to 4.3 Tg NH₃ yr⁻¹ in 2017 with an overall NH₃ emission factor of 12%. Agricultural production for vegetables, maize and rice are the three largest emitters. Compared to previous studies, more emission hotspots were found in South China and temporally, emission peaks are estimated to occur three months earlier in the year, while the total amount of emissions is estimated to be close to that calculated by previous studies. A second emission peak is identified in October, most likely related to the fertilization of the second crop in autumn. Incorporating these new findings on NH₃ emission patterns will enable a better parametrization of models and hence improve the modelling of air quality and subsequent impacts on ecosystems through reactive N deposition.
اظهر المزيد [+] اقل [-]