خيارات البحث
النتائج 1261 - 1270 من 7,240
RNA metabarcoding helps reveal zooplankton community response to environmental stressors
2022
Ankley, Phillip J. | Xie, Yuwei | Havens, Sonya | Peters, Lisa | Timlick, Lauren | Rodriguez-Gil, Jose Luis | Giesy, John P. | Palace, Vince P.
DNA metabarcoding can provide a high-throughput and rapid method for characterizing responses of communities to environmental stressors. However, within bulk samples, DNA metabarcoding hardly distinguishes live from the dead organisms. Here, both DNA and RNA metabarcoding were applied and compared in experimental freshwater mesocosms conducted for assessment of ecotoxicological responses of zooplankton communities to remediation treatment until 38 days post oil-spill. Furthermore, a novel indicator of normalized vitality (NV), sequence counts of RNA metabarcoding normalized by that of DNA metabarcoding, was developed for assessment of ecological responses. DNA and RNA metabarcoding detected similar taxa richness and rank of relative abundances. Both DNA and RNA metabarcoding demonstrated slight shifts in measured α-diversities in response to treatments. NV presented relatively greater magnitudes of differential responses of community compositions to treatments compared to DNA or RNA metabarcoding. NV declined from the start of the experiment (3 days pre-spill) to the end (38 days post-spill). NV also differed between Rotifer and Arthropoda, possibly due to differential life histories and sizes of organisms. NV could be a useful indicator for characterizing ecological responses to anthropogenic influence; however, the biology of target organisms and subsequent RNA production need to be considered.
اظهر المزيد [+] اقل [-]The influences of ambient fine particulate matter constituents on plasma hormones, circulating TMAO levels and blood pressure: A panel study in China
2022
Wang, Jiajia | Wu, Shenshen | Cui, Jian | Ding, Zhen | Meng, Qingtao | Sun, Hao | Li, Bin | Teng, Jun | Dong, Yanping | Aschner, Michael | Wu, Ziyuan | Li, Xiaobo | Chen, Rui
Considerable investigations have been carried out to address the relationship between ambient fine particulate matter (PM₂.₅) and blood pressure (BP) in patients with hypertension. However, few studies have explored the influence of PM₂.₅ and its constituents on Trimethylamine N-oxide (TMAO), an established risk factor for hypertension and cardiovascular disease (CVD), particularly in severely air-polluted areas. To explore the potential impact of PM₂.₅ constituents on BP, plasma hormones, and TMAO, a panel study was conducted to investigate changes in BP, plasma hormones, and TMAO in response to ambient air pollution exposure in stage 1 hypertensive young adults. Linear mixed effect models were used to estimate the cumulative effects of fine particulate matters (PM₂.₅) and its constituents on BP, plasma hormones and TMAO. We found that one interquartile range (IQR) (35 μg/m³) increase in 0–1 day moving-average PM₂.₅ concentrations was statistically significantly associated with elevated systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) with estimated values of 0.13 (95% confidence interval (CI): 0.03 to 0.23) mmHg, 0.18 (95% CI: 0.08 to 0.28) mmHg, and 0.17 (95% CI: 0.09 to 0.26) mmHg, respectively. Hormone disturbance in the renin-angiotensin-aldosterone system was also associated with PM₂.₅ exposure. Elevated TMAO levels with an IQR increase for 0–4, 0–5, 0–6 moving-average concentrations of PM₂.₅ were found, and the increased values ranged from 26.28 (95% CI: 2.92 to 49.64) to 60.78 (31.95–89.61) ng/ml. More importantly, the PM₂.₅-bound metal constituents, such as manganese (Mn), titanium (Ti), and selenium (Se) showed robust associations with elevated BP and plasma TMAO levels. This study demonstrates associations between PM₂.₅ metal constituents and increased BP, changes in plasma hormones and TMAO, in stage 1 hypertensive young adults. Source control, aiming to reduce the emission of PM₂.₅-bound metals should be implemented to reduce the risk of hypertension and CVD.
اظهر المزيد [+] اقل [-]Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis
2022
Yousif Abdellah, Yousif Abdelrahman | Shi, Zhao-Ji | Luo, Yu-Sen | Hou, Wen-Tao | Yang, Xi | Wang, Rui-Long
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were −40%, −60%, −57%, −55%, −42%, and −44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (−17%), moisture content (MC) (−18%), and C/N ratio (−19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
اظهر المزيد [+] اقل [-]Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure
2022
Suzuki, Yoshinari | Kondo, Midori | Akiyama, Hiroshi | Ogra, Yasumitsu
The toxicity of nano-sized particles of mercury (NP–Hg), which are thought to be generated during the detoxification of methyl mercury (MeHg), may differ from that of MeHg, elemental Hg (Hg⁰), and inorganic Hg (I–Hg). From a human health perspective, it is important to evaluate the presence of NP-Hg in seafoods. We investigated the in vivo formation of NP-Hg in fish and shellfish, which are the main sources of Hg exposure in humans. NP-Hg was measured in 90 fish samples with single-particle inductively coupled plasma mass spectrometry (spICP-MS) after enzyme degradation with pancreatin and lipase. In addition to NP-Hg, total Hg (T-Hg), MeHg, and selenium (Se) concentrations were evaluated. Transient Hg signals were detected as nanoparticles from almost all samples by using spICP-MS. Higher particle number concentrations (CPN) were observed in the tuna–swordfish group than in the shellfish group (17.7 × 10⁷ vs. 1.2 × 10⁶ particles/g, respectively). Although the CPN and maximum particle mass increased significantly with increasing T-Hg concentration, the increase in CPN was greater than those in maximum particle mass. Assuming that the NP-Hg detected was HgSe (tiemannite) and spherical based on previous reports, the maximum particle diameter was estimated to be 89 nm. The mean dietary exposures to NP-Hg, T-Hg, and MeHg were estimated to be 0.067, 5.75, and 5.32 μg/person per day, respectively. Generation of NP-Hg was inferred to be widespread in marine animals, with a preferential increase in the number of particles rather than an increase in particle size. The mean dietary exposure to NP-Hg in Japanese people was estimated to be 1.2 ng/kg body weight (BW) per day. Compared to PTWI of 4 μg/kg BW per week (0.57 μg/kg BW per day) derived by JECFA (2011), the health risk from redissolved I–Hg from NP-Hg is small.
اظهر المزيد [+] اقل [-]Evaluated serum perfluoroalkyl acids and their relationships with the incidence of rheumatoid arthritis in the general population in Hangzhou, China
2022
Qu, Jianli | Zhao, Yun | Zhang, Li | Hu, Shilei | Liao, Kaizhen | Zhao, Meirong | Wu, Pengfei | Jin, Hangbiao
Perfluoroalkyl acids (PFAAs) are widely present in human blood, and have many toxic effects on humans. However, effects of PFAA exposure on the risk of rheumatic immune diseases are limited. In the present study, occurrence of 7 PFAAs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA), and perfluorotrdecanoate (PFTrA), were measured in serum samples from 156 healthy people (controls) and 156 rheumatoid arthritis (RA) cases living in Hangzhou, China. We also investigated the relationships among cumulative PFAA levels in serum, some immune markers, and the incidence of RA. The results showed that PFOA (6.1 and 11.8 ng/mL) had the highest mean serum concentrations, followed by PFOS (3.2 and 3.4 ng/mL) and PFDA (0.86 and 2.6 ng/mL), in both controls and RA cases. Cumulative exposure to PFOA in the study population were positively correlated with the levels of rheumatoid factors (rₛ = 0.69, p < 0.01) and anti-cyclic citrullinated peptide antibody (rₛ = 0.56, p < 0.05). Moreover, significant associations of PFOA concentrations with odds ratios (OR) of RA (OR = 1.998, confidence interval (CI): 1.623, 2.361, p = 0.01) were found by adjusting for various covariates. The crude and adjusted OR for RA was respective 1.385 (95% CI: 1.270, 1.510, p = 0.04) and 1.381 (95% CI: 0.972, 1.658, p = 0.06) for a unit increase in serum PFOS levels, but the adjusted results were not significant. Overall, this case-control study found that human serum PFOA concentrations were positively correlated with RF and ACPA levels.
اظهر المزيد [+] اقل [-]Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China
2022
Zhou, Xi | Li, Zhongqin | Zhang, Tingjun | Wang, Feiteng | Tao, Yan | Zhang, Xin
To investigate the chemical components, sources, and interactions of particulate matter (PM) and volatile organic compounds (VOCs), a field campaign was implemented during the spring of 2018 in nine cities in northwestern (NW) China. PM was mainly contributed by organic matter and water-soluble inorganic ions (41% for PM₁₀ and approximately 60% for PM₂.₅ and PM₁). Two typical haze patterns were observed: anthropogenic pollution type (AP-type), wherein contributions of sulfate, nitrate, and ammonium (SNA) increased, and dust pollution type (DP-type), wherein contributions of Ca²⁺ increased and SNA decreased. Source appointment suggested that regional sources contributed close to half to PM₂.₅ pollution (40% for AP-type and 50% for DP-type). Thus, sources from regional transport are also important for haze and dust pollution. The ranking of VOC concentrations was methanol > acetaldehyde > formic acid + ethanol > acetone. Compared with other cities, there are higher oxygenated VOCs (OVOCs) and lower aromatics in NW China. The relationships between VOCs and PM were discussed. The dominating secondary organic aerosols (SOA) formation potential precursors were C₁₀–aromatics, xylene, and styrene under low–nitrogen oxide (NOx) conditions, and benzene, C₁₀–aromatics, and toluene dominated under high–NOx conditions. The quadratic polynomial was the most suitable fitting model for their correlation, and the results suggested that VOC oxidations explained 6.1–10.8% and 9.9–20.7% of SOA formation under high–NOx and low–NOx conditions, respectively.
اظهر المزيد [+] اقل [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González-Fernández, Daniel | van Emmerik, Tim
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macroplastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
اظهر المزيد [+] اقل [-]Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China
2022
Yang, Xiaolong | Hu, Chengye | Wang, Bin | Lin, Hao | Xu, Yongping | Guo, Hao | Liu, Guize | Ye, Jinqing | Gao, Dengzhou
The mineralization and immobilization of nitrogen (N) are critical biogeochemical transformations in estuarine and coastal sediments. However, the biotic and abiotic mechanisms that regulate the two processes in different aged mangrove sediments remain poorly understood. Here, we used ¹⁵N isotope dilution method to investigate the changes in sediment N mineralization (GNM) and NH₄⁺ immobilization (GAI) of different aged mangrove habitats (including 0, 10, and 20 years Sonneratia apetala, as well as >40 years mature native Kandelia obovata) in Qi'ao Island, Guangdong Province, China. Measured GNM and GAI rates ranged from 2.69 to 17.53 μg N g⁻¹ d⁻¹ and 2.29–21.38 μg N g⁻¹ d⁻¹, respectively, which varied both spatially and seasonally. The ratio of GNM to total N (PAM%, 0.24–0.86%) also varied spatially and seasonally, but the ratio of GAI to GNM (RAI, 0.79–1.54) only varied spatially. Mangrove restoration significantly increased the N mineralization and immobilization rates, but remained lower than those of mature native Kandelia obovata habitat. The sediment bacterial abundance, labile organic matter and temperature are the dominant factors in controlling N mineralization and immobilization. Our findings suggested that exotic mangrove Sonneratia aperale plantation can enhance sediment N mineralization and immobilization rates and improve N stability through accumulated biomass rapidly. Overall, these results provide new insights into sediment N transformation processes and associated influencing mechanisms in such intertidal wetlands profoundly influenced by human activities.
اظهر المزيد [+] اقل [-]Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure
2022
Park, Jungeun | Kim, Yurim | Jeon, Hwang-Ju | Kim, Kyeongnam | Kim, Chaeeun | Lee, Seungki | Son, Jino | Lee, Sung-Eun
Polyhalogenated polycyclic aromatic hydrocarbons (HPAHs) represent a major environmental concern due to their persistency and toxicity. Among them, mono-halogenated (HNs) and halomethyl naphthalenes (HMNs) are not well-studied, and the toxicity of many HNs to fishes has not been reported. In this study, we exposed zebrafish (Danio rerio) embryos to naphthalene and five HNs at concentrations ranging from 0.25 to 2.0 mg L⁻¹ to assess acute toxicities and developmental effects. Among them, 2-bromomethyl naphthalene (2-BMN) produced moderate lethal effects (96-h LC₅₀ = 1.4 mg L⁻¹) and significantly reduced hatchability. Abnormal phenotypes, including pericardial edema, spine curvature, and shortened body length, were also induced by 2-BMN (96-h EC₅₀ = 0.45 mg L⁻¹). Treatments of 0.5–2.0 mg L⁻¹ 2-BMN evoked cardiac malformations via significant down-regulation of the cacna1c gene, which codes the voltage-dependent calcium channel, at 72 hpf and up-regulation of the nppa gene, responsible for the expression of natriuretic peptides, at 96 hpf in zebrafish. One presumable toxic photo-dissociated metabolite of 2-BMN, the 2-naphthylmethyl radical, may be responsible for the toxic effect on zebrafish embryos. HPAHs must be monitored and managed due to their adverse effects on living organisms at low concentrations.
اظهر المزيد [+] اقل [-]Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish
2022
Wang, Min-Chen | Furukawa, Fumiya | Wang, Jingwei | Peng, Hui-Wen | Lin, Ching-Chun | Lin, Tzu-Hao | Tseng, Yung-Che
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
اظهر المزيد [+] اقل [-]