خيارات البحث
النتائج 1281 - 1290 من 1,950
Metal extractability patterns to evaluate (potentially) mobile fractions in periurban calcareous agricultural soils in the Mediterranean area—analytical and mineralogical approaches
2013
de Santiago-Martín, Ana | Valverde-Asenjo, Inmaculada | Quintana, Jose R. | Vázquez, Antonio | Lafuente, Antonio L. | González-Huecas, Concepción
A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.
اظهر المزيد [+] اقل [-]Water quality modelling of Lis River, Portugal
2013
Vieira, Judite | Fonseca, André | Vilar, Vítor J. P. | Boaventura, Rui A. R. | Botelho, Cidália M. S.
The aim of the study was to predict the impact of flow conditions, discharges and tributaries on the water quality of Lis River using QUAL2Kw model. Calibration of the model was performed, based on data obtained in field surveys carried out in July 2004 and November 2006. Generally the model fitted quite well the experimental data. The results indicated a decrease of water quality in the downstream area of Lis River, after the confluence of Lena, Milagres and Amor tributaries, as a result of discharges of wastewaters containing degradable organics, nutrients and pathogenic organisms from cattle-raising wastewaters, domestic effluents and agricultural runoff. The water quality criteria were exceeded in these areas for dissolved oxygen, biochemical oxygen demand, total nitrogen and faecal coliforms. Water quality modelling in different scenarios showed that the impact of tributaries on the quality of Lis River water was quite negligible and mainly depends on discharges, which are responsible by an increase of almost 45, 13 and 44 % of ultimate carbonaceous biochemical oxygen demand (CBODᵤ), ammonium nitrogen and faecal coliforms, for winter simulation, and 23, 33 and 36 % for summer simulation, respectively, when compared to the real case scenario.
اظهر المزيد [+] اقل [-]River water quality assessment using environmentric techniques: case study of Jakara River Basin
2013
Mustapha, Adamu | Ahmad Zaharin Aris, | Juahir, Hafizan | Ramli, Mohammad Firuz | Kura, Nura Umar
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p = 0.930, p = 0.001) and BOD5 and COD (r p = 0.839, p = 0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
اظهر المزيد [+] اقل [-]Spontaneous vegetation succession at different central European mining sites: a comparison across seres
2013
Prach, Karel | Lencová, Kamila | Řehounková, Klára | Dvořáková, Helena | Jírová, Alena | Konvalinková, Petra | Mudrák, Ondřej | Novák, Jan | Trnková, Romana
We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.
اظهر المزيد [+] اقل [-]Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes
2013
Ahmad, Mahtab | Lee, Sang Soo | Oh, Sang-Eun | Mohan, Dinesh | Moon, Deok Hyun | Lee, Young Han | Ok, Yong Sik
Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8-10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.
اظهر المزيد [+] اقل [-]Polyaromatic hydrocarbon exposure: an ecological impact ambiguity
2013
Ball, Andrew | Truskewycz, Adam
Polyaromatic hydrocarbons (PAHs) represent a fraction of petroleum hydrocarbons and are currently one of the foremost sources of generating energy in today’s contemporary society. However, evidence highlighted in this review show that PAH pollution, as a result of oil spills, hazardous PAH-contaminated working environments and technologies which do not efficiently utilise fuels, as well as natural sources of emissions (e.g. forest fires) may have significant health implications for all taxa. The extent of damage to organisms from PAH exposure is dependent on numerous factors including degree and type of PAH exposure, nature of the environment contaminated (i.e. terrestrial or aquatic), the ability of an organism to relocate to pristine environments, type and sensitivity of organism to specific hydrocarbon fractions and ability of the organism to metabolise different PAH fractions. The review highlights the fact that studies on the potential damage of PAHs should be carried out using mixtures of hydrocarbons as opposed to individual hydrocarbon fractions due to the scarcity of individual fractions being a sole contaminant. Furthermore, potential damage of PAH-contaminated sites should be assessed using an entire ecological impact outlook of the affected area.
اظهر المزيد [+] اقل [-]Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan
2013
Prakash, Nagan | Latha, Srinivasan | Sudha, Persu N. | Renganathan, N Gopalan
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k ₁, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu²⁺ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.
اظهر المزيد [+] اقل [-]Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate
2013
Ong, Soon-An | Min, Ohm-Mar | Ho, Li-Ngee | Wong, Yee-Shian
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir–Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
اظهر المزيد [+] اقل [-]Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH
2013
Bährs, Hanno | Putschew, Anke | Steinberg, Christian E. W.
The interaction of natural organic matter with phytoplankton communities in freshwater ecosystems is an intensively studied subject matter. Previous studies showed that apparently plant-derived phenols were able to inhibit algal and cyanobacterial growth. Furthermore, it was also assumed that humic substances (HS), which comprise the major part of dissolved organic carbon in freshwater ecosystems, directly interact with freshwater phototrophs. For example, quinoid building blocks of HS were thought to be algicidal. To identify key environmental variable for the toxic action of potential quinone algicides, we tested the toxicity of hydroquinone (HQ) to different eukaryotic and prokaryotic freshwater phototrophs in terms of growth performance and investigated also the effect of HQ oxidation at different pH values on its algicidal potential. It was shown that cyanobacterial species were much more susceptible to hydroquinone than coccal green algal species were, with Microcystis aeruginosa being the most sensitive species by far. In addition, it was obvious that the aging of hydroquinone-stock solution at pH 11 led to polymerization and, by this process, to a total loss of toxicity; whereas the algicidal potential sustained if the polyphenol was kept at pH 7. Since most lakes with heavy blooms of phototrophs possess pH values clearly above 7.0, it is questionable, if polyphenols in general and quinones in particular are the effective chemicals and if litter and straw leachates are applied as means to combat algal and cyanobacterial blooms.
اظهر المزيد [+] اقل [-]Degradation of dyes from aqueous solution by Fenton processes: a review
2013
Nidheesh, Puthiya Veetil | Gandhimathi, Rajan | Ramesh, Srikrishnaperumal Thanga
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as “Fenton circle”. This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H₂O₂ concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.
اظهر المزيد [+] اقل [-]