خيارات البحث
النتائج 1311 - 1320 من 1,908
Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies
2013
Rawat, Monica | Rawat, A. P. | Giri, Krishna | Rai, J. P. N.
Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin–Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber–Morris) revealed that the Langmuir model best correlated to experimental data, and Weber–Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu²⁺, Mg²⁺, Mn²⁺ and Zn²⁺ by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.
اظهر المزيد [+] اقل [-]Distribution of steroid- and dioxin-like activities between sediments, POCIS and SPMD in a French river subject to mixed pressures
2013
Creusot, Nicolas | Tapie, Nathalie | Piccini, Benjamin | Balaguer, Patrick | Porcher, Jean-Marc | Budzinski, Hélène | Aït-Aïssa, Selim
The contamination of aquatic systems by endocrine disrupting chemicals (EDCs) is now a widely established fact. Nevertheless, there is still a scarcity of knowledge concerning the source, transport, fate and bioavailability of such active compounds. In the present study we assessed the distribution of estrogenic, (anti-)androgenic, pregnane X receptor-like (PXR) and dioxin-like activities between sediment and water compartments using a polar organic compound integrative sampler (POCIS) and a semi-permeable membrane device (SPMD) passive sampler in a river where sediment has been previously described as highly and multi-contaminated. We first confirmed the contamination pattern of this river sediment between 2004, 2009 and 2010 samples, suggesting that this river is subject to a constant high contamination level. However, we showed a different distribution pattern of these activities between compartments: estrogenic activity was mainly detected in POCIS extracts and to a lesser extent in sediment and SPMD extracts; anti-androgenic activities were mainly detected in SPMD and sediment extracts while no activity was detected in POCIS extracts; PXR-like activity was detected in all three investigated compartments, with POCIS > SPMD > sediment; dioxin-like activity was mainly found in the sediment and the SPMD extracts. Overall, partitioning of the biological activities was in accordance with physicochemical properties (e.g., log K ₒw) of typical known active chemicals in each bioassay. Furthermore, in order to establish whether the chemicals involved in these activities were similar between the compartments, we fractionated sediment, POCIS and SPMD extracts using a multi-step fractionation procedure. This highlighted differences in the nature of active chemicals between compartments. Altogether, our results support the need to consider different compartments in order to enhance exposure assessment.
اظهر المزيد [+] اقل [-]Graphene—a promising material for removal of perchlorate (ClO₄ ⁻) from water
2013
Lakshmi, Jothinathan | Vasudevan, Subramanyan
A batch adsorption process was applied to investigate the removal of perchlorate (ClO) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.
اظهر المزيد [+] اقل [-]The assessment of particulate matter emitted from stone-crushing industry by correlating rock textures with particles generated after comminution and dispersed in air environment
2013
Belardi, Girolamo | Vignaroli, Gianluca | Plescia, Paolo | Passeri, Luciano
The generation and emission of particulate matter from abrasion industry are subjects of the pollution monitoring by multidisciplinary study involving earth sciences and engineering disciplines. This work investigates the correlation between textural properties of in situ rock with class size distribution and morphology of particles generated after rock comminution and particles emitted in the air. A special comminution-dust sampling architecture was realised. The combined use of scanning electron microscopy and particle size analyser was considered in performing digital image analysis on both crushed products and airborne particles collected onto membrane filters. The results show that the size and morphology of crushed particles are linked to the petrographic rock properties. In particular, particles with fibrous morphology are prominent in rocks showing foliated textures where elongated minerals occurred, with implication for asbestos-bearing rocks. For what concerns the airborne particles, the results show that their aerodynamic diameters are independent of the crusher operating conditions. External parameters probably intervene in the distribution of the airborne particles emission, including the dynamic air fluxes, or environmental conditions. By applying mathematical models, the morphology and size range of airborne particles following the comminution processes can be predicted, and results has implication for pollutants contamination due to particulate matters emitted by crush stone industry.
اظهر المزيد [+] اقل [-]Immobilization of lead in contaminated firing range soil using biochar
2013
Moon, Deok Hyun | Park, Jae Woo | Chang, Yoon-Young | Ok, Yong Sik | Lee, Sang Soo | Ahmad, Mahtab | Koutsospyros, Agamemnon | Park, Jeong-Hun | Baek, Kitae
Soybean stover-derived biochar was used to immobilize lead (Pb) in military firing range soil at a mass application rate of 0 to 20 wt.% and a curing period of 7 days. The toxicity characteristic leaching procedure (TCLP) was performed to evaluate the effectiveness of the treatment. The mechanism responsible for Pb immobilization in military firing range soil was evaluated by scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray absorption fine structure (XAFS) spectroscopy analyses. The treatment results showed that TCLP Pb leachability decreased with increasing biochar content. A reduction of over 90 % in Pb leachability was achieved upon treatment with 20 wt.% soybean stover-derived biochar. SEM-EDX, elemental dot mapping and XAFS results in conjunction with TCLP leachability revealed that effective Pb immobilization was probably associated with the pozzolanic reaction products, chloropyromorphite and Pb-phosphate. The results of this study demonstrated that soybean stover-derived biochar was effective in immobilizing Pb in contaminated firing range soil.
اظهر المزيد [+] اقل [-]Effects of natural organic matter on the microporous sorption sites of black carbon in a Yangtze River sediment
2013
Zhang, Jing | Séquaris, Jean-Marie | Klumpp, Erwin
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.3 % and the preheated sediment (combusted at 375 °C) with reduced OC content (defined as BC) of 0.4 % by gas and pyrene sorption. The SSA and microporosity of the pristine and preheated sediments were characterized by N2 and CO2 adsorption. The results suggest that the adsorption of N2 was hindered by amorphous organic carbon (AOC) in the pristine sediment but CO2 was not. Instead, the uptake of CO2 was higher in the presence of AOC, likely due to the partition of CO2 molecules into the organic matter. The pyrene adsorptions to BC in pristine and preheated sediments show a similar adsorption capacity at high concentration, suggesting that AOC of ca. 2.9 % in the pristine sediment does not reduce the accessibility to the sorption sites on BC for pyrene.
اظهر المزيد [+] اقل [-]Cytotoxic, phytotoxic, and mutagenic appraisal to ascertain toxicological potential of particulate matter emitted from automobiles
2013
Anwar, Khaleeq | Ejaz, Sohail | Ashraf, Muhammad | Altaf, Imran | Anjum, Aftab Ahmad
Vehicular air pollution is a mounting health issue of the modern age, particularly in urban populations of the developing nations. Auto-rickshaws are not considered eco-friendly as to their inefficient engines producing large amount of particulate matter (PM), thus posing significant environmental threat. The present study was conducted to ascertain the cytotoxic, phytotoxic, and mutagenic potential of PM from gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas-powered four-stroke auto-rickshaws (FSA). Based on the increased amount of aluminum quantified during proton-induced X-ray emission analysis of PM from TSA and FSA, different concentrations of aluminum sulfate were also tested to determine its eco-toxicological potential. The MTT assay demonstrated significant (p < 0.001) dose-dependent cytotoxic effects of different concentrations of TSA, FSA, and aluminum sulfate on BHK-21 cell line. LC50 of TSA, FSA, and aluminum sulfate was quantified at 16, 11, and 23.8 μg/ml, respectively, establishing PM from FSA, a highly cytotoxic material. In case of phytotoxicity screening using Zea mays, the results demonstrated that all three tested materials were equally phytotoxic at higher concentrations producing significant reduction (p < 0.001) in seed germination. Aluminum sulfate proved to be a highly phytotoxic agent even at its lowest concentration. Mutagenicity was assessed by fluctuation Salmonella reverse mutation assay adopting TA100 and TA98 mutant strains with (+S9) and without (-S9) metabolic activation. Despite the fact that different concentrations of PM from both sources, i.e., TSA and FSA were highly mutagenic (p < 0.001) even at lower concentrations, the mutagenic index was higher in TSA. Data advocate that all tested materials are equally ecotoxic, and if the existing trend of atmospheric pollution by auto-rickshaws is continued, airborne heavy metals will seriously affect the normal growth of local inhabitants and increased contamination of agricultural products, which will amplify the dietary intake of the toxic elements and could result in genetic mutation or long-term health implications.
اظهر المزيد [+] اقل [-]Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum
2013
Antunes, S. C. | Freitas, Rosa | Figueira, E. | Gonçalves, Fernando | Nunes, Bruno
Acetaminophen (paracetamol) is one of the most used pharmaceutical drugs, due to its antipyretic and analgesic properties that turn it into a primary choice in varied pathologies and conditions. However, and despite its massive use, acetaminophen is not exempt of adverse effects, especially when administered in over dosage, which are related to the formation of toxic metabolites by oxidative pathways. It is thus possible to observe that toxicity caused by acetaminophen is usually mediated by reactive oxygen species and can result in multiple effects, ranging from protein denaturation to lipid peroxidation and DNA damage. The occurrence of acetaminophen has been reported in the aquatic environment, being important to address the potential exertion of toxic effects on nontarget environmentally exposed organisms. The present study intended to characterize the effects of acute acetaminophen exposure on physiological traits (antioxidant defense, oxidative damage) of two species of bivalves, namely, the edible clams Venerupis decussata and Venerupis philippinarum. Results showed a significant increase in all oxidative stress biomarkers, evidencing the bioactivation of acetaminophen into a deleterious prooxidant, triggering the onset of deleterious effects. Furthermore, strong interspecific differences were observed among responses of the two tested species, which was a major issue due to intrinsic ecological implications when one considers that both species share the same habitat.
اظهر المزيد [+] اقل [-]Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy
2013
Borgese, L. | Federici, S. | Zacco, A. | Gianoncelli, A. | Rizzo, L. | Smith, D. R. | Donna, F. | Lucchini, R. | Depero, L. E. | Bontempi, E.
Metal contamination was investigated in soils of the Vallecamonica, an area in the northern part of the Brescia province (Italy), where ferroalloy industries were active for a century until 2001. The extent in which emissions from ferroalloy plants affected metal concentration in soils is not known in this area. In this study, the geogenic and/or anthropogenic origin of metals in soils were estimated. A modified Community Bureau of Reference sequential chemical extraction method followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses were employed to evaluate the potential bioavailability of Al, Cd, Mn, Fe, Cr, Zn, and Pb in soils. Principal component analysis (PCA) was used to assess the relationships among metal sources in soil samples from different locations. This approach allowed distinguishing of different loadings and mobility of metals in soils collected in different areas. Results showed high concentrations and readily extractability of Mn in the Vallecamonica soils, which may suggest potential bioavailability for organisms and may create an environmental risk and potential health risk of human exposure.
اظهر المزيد [+] اقل [-]Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City
2013
Zhou, Dong | Bi, Chun-Juan | Chen, Zhen-Lou | Yu, Zhong-Jie | Wang, Jun | Han, Jing-Chao
Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p < 0.01), while TDP was positively correlated with BOD/COD only (p < 0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p < 0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p < 0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.
اظهر المزيد [+] اقل [-]