خيارات البحث
النتائج 1331 - 1340 من 8,010
Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019 النص الكامل
2021
Maji, Kamal Jyoti | Namdeo, Anil
Ambient ozone (O₃) pollution has become a big issue in China. Recent studies have linked long- and short-term O₃ exposure to several public health risks. In this study, we (1) characterize the long-term and short-term O₃-attributed health metric in China from 2015 to 2019; (2) estimate the surface O₃ trends; and (3) quantify the long-term and short-term health impacts (i.e. all-cause, cardiovascular and respiratory mortality) in 350 urban Chinese cities. In these 5-years, the national annual average of daily maximum 8 h average (AVGDMA8) O₃ concentrations and warm-season (April–September) 4th highest daily maximum 8 h average (4DMA8) O₃ concentrations increased from 74.0 ± 15.5 μg/m³ (mean ± standard deviation) to 82.3 ± 12.0 μg/m³ and 167 ± 37.0 μg/m³ to 174 ± 30.0 μg/m³ respectively. During this period, the DMA8 O₃ concentration increased by 1.9 ± 3.3 μg/m³/yr across China, with over 70% of the monitoring sites showing a positive upward trend and 19.4% with trends >5 μg/m³/yr. The estimated long-term all-cause, cardiovascular and respiratory premature mortalities attributable to AVGDMA8 O₃ exposure in 350 Chinese cities were 181,000 (95% CI: 91,500–352,000), 112,000 (95% CI: 38,100–214,000) and 33,800 (95% CI: 0–71,400) in 2019, showing increases of 52.5%, 52.9% and 54.6% respectively compared to 2015 levels. Similarly, short-term all-cause, cardiovascular and respiratory premature mortalities attributed to ambient 4DMA8 O₃ exposure were 156,000 (95% CI: 85,300–227,000), 73,500 (95% CI: 27,500–119,000) and 28,600 (95% CI: 14,500–42,800) in 2019, increases of 19.6%, 19.8% and 21.2% respectively compared to 2015. The results of this study are important in ascertaining the effectiveness of recent emission control measures and to identify the areas that require urgent attention.
اظهر المزيد [+] اقل [-]Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution النص الكامل
2021
Li, Detian | Cui, Hongbiao | Cheng, Yueqin | Xue, Lihong | Wang, Bingyu | He, Huayong | Hua, Yun | Chu, Qingnan | Feng, Yanfang | Yang, Linzhang
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO₃) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd²⁺ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g⁻¹ (initial Cd²⁺ concentration was 50 mg L⁻¹), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd²⁺ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd²⁺. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd²⁺ removal from water.
اظهر المزيد [+] اقل [-]Phosphorus mobilization in unamended and magnesium sulfate-amended soil monoliths under simulated snowmelt flooding النص الكامل
2021
Vitharana, Udaya W.A. | Kumaragamage, Darshani | Balasooriya, B.L.W.K. | Indraratne, Srimathie P. | Goltz, Doug
Enhanced release of phosphorus (P) from soils with snowmelt flooding poses a threat of eutrophication to waterbodies in cold climatic regions. Reductions in P losses with various soil amendments has been reported, however effectiveness of MgSO₄ has not been studied under snowmelt flooding. This study examined (a) the P release enhancement with flooding in relation to initial soil P status and (b) the effectiveness of MgSO₄ at two rates in reducing P release to floodwater under simulated snowmelt flooding. Intact soil monoliths were collected from eight agricultural fields from Southern Manitoba, Canada. Unamended and MgSO₄ surface-amended monoliths (2.5 and 5.0 Mg ha⁻¹) in triplicates were pre-incubated for 7 days, then flooded and incubated (4 °C) for 56 days. Pore water and floodwater samples collected at 7-day intervals were analyzed for dissolved reactive P (DRP), pH, Ca, Mg, Fe and Mn. Redox potential (Eh) was measured on each day of sampling. Representative soil samples collected from each field were analyzed for Olsen and Mehlich 3-P. Simulated snowmelt flooding enhanced the mobility of soil P with approximately 1.2–1.6 -fold increase in pore water DRP concentration from 0 to 21 days after flooding. Mehlich-3 P content showed a strong relationship with the pore water DRP concentrations suggesting its potential as a predictor of P loss risk during prolonged flooding. Surface application of MgSO₄ reduced the P release to pore water and floodwater. The 2.5 Mg ha⁻¹ rate was more effective than the higher rate with a 21–75% reduction in average pore water DRP, across soils. Soil monoliths amended with MgSO₄ maintained a higher Eh, and had greater pore water Ca and Mg concentrations, which may have reduced redox-induced P release and favored re-precipitation of P with Ca and Mg, thus decreasing DRP concentrations in pore water and floodwater.
اظهر المزيد [+] اقل [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene النص الكامل
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
اظهر المزيد [+] اقل [-]Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling النص الكامل
2021
Huang, Caide | Ge, Yan | Shen, Zhiqiang | Wang, Kun | Yue, Shizhong | Qiao, Yuhui
Toxicokinetic (TK) model provides a new approach to mechanistically elucidate the natural variation of metal handling strategy by adaptive and sensitive earthworm populations. Here, TK model was applied to explore the metal handling and resistance strategy of wild Metaphire californica with different historical exposure history through a 12-day re-exposure and another 12-day elimination incubation. M. californica populations showed different kinetic strategies for non-essential metals (Cd and Pb) and essential metals (Zn and Cu), which were closely related to their exposure history. M. californica from the most serious Cd-contaminated soil showed the fastest kinetic rates of both Cd uptake (K₁ = 0.78 gₛₒᵢₗ/gwₒᵣₘ/day) and elimination (K₂ = 0.23 day⁻¹), and also had the lowest Cd half-life (t₁/₂ = 3.01 day), which demonstrated the potential Cd-resistance of wild M. californica from Cd-contaminated soils. Besides, the comparative experiment showed totally different metal kinetics of laboratory Eisenia fetida from field M. californica, suggesting the impacts of distinct exposure history and species-specifical sensitivities. These findings provide a novel approach to identify and quantify resistance using TK model and also imply the risk of overlooking existing exposure background and interspecies extrapolation in eco-toxicological studies and risk assessments.
اظهر المزيد [+] اقل [-]Prenatal exposure to criteria air pollutants and associations with congenital anomalies: A Lebanese national study النص الكامل
2021
Al Noaimi, Ghaliya | Yunis, Khalid | El Asmar, Khalil | Abu Salem, Fatima K. | Afif, Charbel | Ghandour, Lilian A. | Hamandi, Ahmad | Dhaini, Hassan R.
Prenatal exposure to criteria air pollutants and associations with congenital anomalies: A Lebanese national study النص الكامل
2021
Al Noaimi, Ghaliya | Yunis, Khalid | El Asmar, Khalil | Abu Salem, Fatima K. | Afif, Charbel | Ghandour, Lilian A. | Hamandi, Ahmad | Dhaini, Hassan R.
Maternal exposure to air pollution has been associated with a higher birth defect (BD) risk. Previous studies suffer from inaccurate exposure assessment methods, confounding individual-level variations, and classical analytical modelling. This study aimed to examine the association between maternal exposure to criteria air pollutants and BD risk. A total of 553 cases and 10,214 controls were identified from private and public databases. Two subgroups were then formed: one for a matched case-control design, and another for Feature Selection (FS) analysis. Exposure assessment was based on the mean air pollutant-specific levels in the mother’s residential area during the specific BD gestational time window of risk (GTWR) and other time intervals. Multivariate regression models outcomes consistently showed a significant protective effect for folic acid intake and highlighted parental consanguinity as a strong BD risk factor. After adjusting for these putative risk factors and other covariates, results show that maternal exposure to PM₂.₅ during the first trimester is significantly associated with a higher overall BD risk (OR:1.05, 95%CI:1.01–1.09), and with a higher risk of genitourinary defects (GUD) (OR:1.06, 95%CI:1.01–1.11) and neural tube defects (NTD) (OR:1.10, 95%CI:1.03–1.17) during specific GTWRs. Maternal exposure to NO₂ during GTWR exhibited a significant protective effect for NTD (OR:0.94, 95%CI:0.90–0.99), while all other examined associations were not statistically significant. Additionally, maternal exposure to SO₂ during GTWR showed a significant association with a higher GUD risk (OR:1.17, 95%CI:1.08–1.26). When limiting selection to designated monitor coverage radiuses, PM₂.₅ maintained significance with BD risk and showed a significant gene-environment interaction for GUD (p = 0.018), while NO₂ protective effect expanded to other subtypes. On the other hand, FS analysis confirmed maternal exposure to PM₂.₅ and NO₂ as important features for GUD, CHD, and NTD. Our findings, set the basis for building a novel BD risk prediction model.
اظهر المزيد [+] اقل [-]Prenatal exposure to criteria air pollutants and associations with congenital anomalies: A Lebanese national study النص الكامل
2021
Al Noaimi, Ghaliya | Yunis, Khalid A. | El-Asmar, Khalil | Abu Salem, Fatima K. | Afif, Charbel | Ghandour, Lilian A. | Hamandi, Ahmad | Dhaini, Hassan R. | Environmental Health (ENHL) | Pediatrics and Adolescent Medicine | Epidemiology and Population Health (EPHD) | Department of Computer Science | Faculty of Health Sciences (FHS) | Faculty of Medicine (FM) | Faculty of Arts and Sciences (FAS) | American University of Beirut
Maternal exposure to air pollution has been associated with a higher birth defect (BD) risk. Previous studies suffer from inaccurate exposure assessment methods, confounding individual-level variations, and classical analytical modelling. This study aimed to examine the association between maternal exposure to criteria air pollutants and BD risk. A total of 553 cases and 10,214 controls were identified from private and public databases. Two subgroups were then formed: one for a matched case-control design, and another for Feature Selection (FS) analysis. Exposure assessment was based on the mean air pollutant-specific levels in the mother's residential area during the specific BD gestational time window of risk (GTWR) and other time intervals. Multivariate regression models outcomes consistently showed a significant protective effect for folic acid intake and highlighted parental consanguinity as a strong BD risk factor. After adjusting for these putative risk factors and other covariates, results show that maternal exposure to PM2.5 during the first trimester is significantly associated with a higher overall BD risk (OR:1.05, 95%CI:1.01–1.09), and with a higher risk of genitourinary defects (GUD) (OR:1.06, 95%CI:1.01–1.11) and neural tube defects (NTD) (OR:1.10, 95%CI:1.03–1.17) during specific GTWRs. Maternal exposure to NO2 during GTWR exhibited a significant protective effect for NTD (OR:0.94, 95%CI:0.90–0.99), while all other examined associations were not statistically significant. Additionally, maternal exposure to SO2 during GTWR showed a significant association with a higher GUD risk (OR:1.17, 95%CI:1.08–1.26). When limiting selection to designated monitor coverage radiuses, PM2.5 maintained significance with BD risk and showed a significant gene-environment interaction for GUD (p = 0.018), while NO2 protective effect expanded to other subtypes. On the other hand, FS analysis confirmed maternal exposure to PM2.5 and NO2 as important features for GUD, CHD, and NTD. Our findings, set the basis for building a novel BD risk prediction model. © 2021 Elsevier Ltd
اظهر المزيد [+] اقل [-]Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk النص الكامل
2021
Fry, K.L. | Gillings, M.M. | Isley, C.F. | Gunkel-Grillon, P. | Taylor, Mark Patrick
Metallurgical industries remain a considerable source of trace element contamination and potential human health risk. Determination of sources is a key challenge. With respect to the South Pacific's largest and longest operating metallurgic smelter in Nouméa, New Caledonia, determining the environmental impact and subsequent human health risk associated with local ferronickel smelting is complicated by natural geological enrichment of Ni and Cr. This study applies a multi-method and multi-matrix approach to disentangle smelter emissions from geogenic sources and model the consequent health risk from industrial activity. Dust wipes (n = 108), roadside soil (n = 91), garden soil (n = 15) and household vacuum dust (n = 39) were assessed to explore geospatial trace element (As, Cr, Cu, Fe, Mn, Ni, Pb, S, V and Zn) variations across outdoor and indoor environments. Enrichment factors (EF) identified elevated levels of smelter-related trace elements: S (EF = 7), Ni (EF = 6) and Cr (EF = 4), as well as Zn (EF = 4). Smelter-related elements in soil and dust deposits were negatively correlated with distance from the facility. Similarity of Pb isotopic compositions between dust wipes, surface soil and vacuum dust indicated that potentially toxic trace elements are being tracked into homes. Non-carcinogenic health risk modelling (Hazard Index, HI) based on 15 spatial nodes across Nouméa revealed widespread exceedance of tolerable risk for children (0–2 years) for Ni (HI 1.3–15.8) and Mn (HI 0.6–1.8). Risk was greatest near the smelter and to the north-west, in the direction of prevailing wind. Given the elevated cancer risk documented in New Caledonia, disentanglement of environmental from industrial sources warrants further attention to ensure community health protection. Our analysis illustrates how the confounding effects from complex environmental factors can be distilled to improve the accuracy of point source apportionment to direct future mitigation strategies.
اظهر المزيد [+] اقل [-]Accumulation of phthalates under high versus low nitrogen addition in a soil-plant system with sludge organic fertilizers instead of chemical fertilizers النص الكامل
2021
Hui, Kunlong | Tang, Jun | Cui, Yini | Xi, Beidou | Tan, Wenbing
Nitrogen is the main nutrient in soil. The long-term addition of N leads to changes in the soil dissolved organic matter (DOM) and other quality indicators, which affects the adsorption and accumulation of organic pollutants. The use of organic fertilizer is important for the development of green agriculture. However, organic fertilizers (especially sludge organic fertilizers (SOFs) contain phthalates (PAEs) that may accumulate in the soil and result in environmental contamination. How this accumulation response varies with the magnitude of long-term N addition, especially in different soil layer profiles, remains unclear. Here, changes in the content of PAEs in the soil–plant system without and after SOFs application were studied through field experiments in soils with different N addition backgrounds (CK, N1, N3 (0, 100, 300 kg N ha⁻¹ yr⁻¹ respectively)). Our results showed that the application of SOFs increase the accumulation of PAEs in soil profiles and plant systems, increasing human health risks. The content of Σ₅PAEs in the topsoil increased from 0.96 ± 0.10 to 1.86 ± 0.09 mg kg⁻¹. Moreover, under a high N addition background and SOFs application, the characteristics of soil DOM change, and the accumulation of PAEs in soil was nearly 30% higher compared with the low N group. Some suggestions such as removing PAEs from SOFs during preparation, conducting soil surveys before applying PAEs, and using soil amendments, which are provided for optimizing the trialability and environmental safety of SOFs application.
اظهر المزيد [+] اقل [-]Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? النص الكامل
2021
Sathicq, María Belén | Sabatino, Raffaella | Corno, Gianluca | Di Cesare, Andrea
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
اظهر المزيد [+] اقل [-]Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China النص الكامل
2021
Jiang, Chunxia | Diao, Xiaoping | Wang, Haihua | Ma, Siyuan
Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10⁷–6.88 × 10⁸ copies per g sediment (1.27 × 10⁻²–3.39 × 10⁻² copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem.
اظهر المزيد [+] اقل [-]