خيارات البحث
النتائج 1351 - 1360 من 1,956
Mutagenicity and genotoxicity assessment of industrial wastewaters النص الكامل
2013
Masood, Farhana | Malik, Abdul
The genotoxicity of industrial wastewaters from Jajmau (Kanpur), was carried out by Ames Salmonella/microsome test, DNA repair-defective mutants, and Allium cepa anaphase-telophase test. Test samples showed maximum response with TA98 strain with and without metabolic activation. Amberlite resins concentrated wastewater samples were found to be more mutagenic as compared to those of liquid-liquid extracts (hexane and dichloromethane extracts). The damage in the DNA repair defective mutants in the presence of Amberlite resins concentrated water samples were found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 μl/ml culture. Among all the mutants, polA exhibited maximum decline with test samples. Mitotic index (MI) of root tip meristematic cells of A. cepa treated with 5, 10, 25, 50, and 100 % (v/v) wastewaters were significantly lower than the control. Complementary to the lower levels of MI, the wastewaters showed higher chromosomal aberration levels in all cases investigated.
اظهر المزيد [+] اقل [-]Impact of Zn–Pb mining in the Olkusz ore district on the Permian aquifer (SW Poland) النص الكامل
2013
Motyka, Jacek | Postawa, Adam
Long-term extensive mining of Zn–Pb ores in the Olkusz area resulted in significant changes of water table levels and chemical composition of water in all aquifers in this area. Within the Permian aquifer, hydrochemical type of water evolved in two general stages. Short-term effect was freshening in the zones of contact with overlying the Triassic limestones and dolomites. Long-term effect was a change in flow pattern and, as a consequence, an inflow of naturally altered and antropogenically contaminated water from the Triassic aquifer into the Permian complex. This was especially intensive in densely fissured and fault zones. As a result of all these processes, hydrochemical type of water shifted from multi-ion types with various combinations of ions towards higher shares of sulphates, calcium and magnesium.
اظهر المزيد [+] اقل [-]Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops النص الكامل
2013
Eggen, Trine | Heimstad, Eldbjørg S. | Stuanes, A. O. (Arne O.) | Norli, Hans Ragnar
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kₒw2.59), triethyl-chloro-phosphate (TCEP) (log Kₒw1.44), tributyl phosphate (TBP) (log Kₒw4.0), the insect repellent N,N-diethyl toluamide (DEET) (log Kₒw2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log Kₒw2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log Kₒwin same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.
اظهر المزيد [+] اقل [-]Behaviour and variability of local and regional oxidant levels (OX = O₃ + NO ₂) measured in a polluted area in central-southern of Iberian Peninsula النص الكامل
2013
Notario, Alberto | Bravo, Iván | Adame, José Antonio | Díaz-de-Mera, Yolanda | Aranda, Alfonso | Rodríguez, Ana | Rodriguez, Diana
The purpose of this work is to contribute to the understanding of the photochemical air pollution in central-southern of the Iberian Peninsula, analysing the behaviour and variability of oxidant levels (OX = O₃ + NO₂), measured in a polluted area with the highest concentration of heavy industry in central Spain. A detailed air pollution database was observed from two monitoring stations. The data period used was 2008 and 2009, around 210,000 data, selected for its pollution and meteorological statistics, which are very representative of the region. Data were collected every 15 min, however hourly values were used to analyse the seasonal and daily ozone, NO, NO₂ and OX cycles. The variation of OX concentrations with NO ₓ is investigated, for the first time, in the centre of the Iberian Peninsula. The concentration of OX was calculated using the sum of a NO ₓ -independent ‘regional’ contribution (i.e. the O₃ background), and a linearly NO ₓ -dependent ‘local’ contribution. Monthly dependence of regional and local OX concentration was observed to determine when the maximum values may be expected. The variation of OX concentrations with levels of NO ₓ was also measured, in order to pinpoint the atmospheric sources of OX in the polluted areas. The ratios [NO₂]/[OX] and [NO₂]/[NO ₓ ] vs. [NO ₓ ] were analysed to find the fraction of OX in the form of NO₂, and the possible source of the local NO ₓ -dependent contribution, respectively. The progressive increase of the ratio [NO₂]/[OX] with [NO ₓ ] observed shows a greater proportion of OX in the form of NO₂ as the level of NO ₓ increases. The higher measured values in the ratio [NO₂]/[NO ₓ ] should not be attributed to NO ₓ emissions by vehicles; they could be explained by industrial emission, termolecular reactions or formaldehyde and HONO directly emitted by vehicles exhausts. We also estimate the rate of NO₂ photolysis, J NO₂ = 0.18–0.64 min⁻¹, a key atmospheric reaction that influence O₃ production and then the regional air quality. The first surface plot study of annual variation of the daily mean oxidant levels, obtained for this polluted area may be used to improve the atmospheric photochemical dynamic in this region of the Iberian Peninsula where there are undeniable air quality problems.
اظهر المزيد [+] اقل [-]Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5 النص الكامل
2013
Iglesias, O. | Fernández de Dios, M. A. | Pazos, M. | Sanromán, M. A.
This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80-100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents.
اظهر المزيد [+] اقل [-]Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa النص الكامل
2013
Wang, Zhenhong | Luo, Zhuanxi | Yan, Changzhou
Arsenic (As) as a major hazardous metalloid was affected by phytoplankton in many aquatic environments. The toxic dominant algae Microcystis aeruginosa was exposed to different concentrations of inorganic arsenic (arsenate or arsenite) for 15 days in BG11 culture media. Arsenic accumulation, toxicity, and speciation in M. aeruginos as well as the changes of As species in media were examined. M. aeruginosa has a general well tolerance to arsenate and a definite sensitivity to arsenite. Additionally, arsenate actively elevated As methylation by the algae but arsenite definitely inhibited it. Interestingly, the uptake of arsenite was more pronounced than that of arsenate, and it was correlated to the toxicity. Arsenate was the predominant species in both cells and their growth media after 15 days of exposure to arsenate or arsenite. However, the amount of the methylated As species in cells was limited and insignificantly affected by the external As concentrations. Upon uptake of the inorganic arsenic, significant quantities of arsenate as well as small amounts of arsenite, DMA, and MMA were produced by the algae and, in turn, released back into the growth media. Bio-oxidation was the first and primary process and methylation was the minor process for arsenite exposures, while bioreduction and the subsequent methylation were the primary metabolisms for arsenate exposures. Arsenic bioaccumulation and transformation by M. aeruginosa in aquatic environment should be paid more attention during a period of eutrophication.
اظهر المزيد [+] اقل [-]Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain) النص الكامل
2013
Valcárcel, Y. | Alonso, S González | Rodríguez-Gil, J. L. | Castaño, A. | Montero, J. C. | Criado-Alvarez, J. J. | Mirón, I. J. | Catalá, M.
Numerous studies have shown the presence of pharmaceutically active compounds (PhACs) in different environmental compartments, for example, in surface water or wastewater ranging from nanograms per litre to micrograms per litre. Likewise, some recent studies have pointed to seasonal variability, thus indicating that PhAcs concentrations in the aquatic environment may depend on the time of year. This work intended to find out (1) whether Tagus fluvial and drinking water were polluted with different groups of PhACs and (2) if their concentrations differed between winter and summer seasons. From the 58 substances analysed, 41 were found belonging to the main therapeutic groups. Statistical differences were seen for antibacterials, antidepressants, anxiolytics, antiepileptics, and cardiovascular drugs, with higher concentrations being detected in winter than in summer. These results might indicate that the PhACs analysed in this study undergo lower environmental degradation in winter than in summer. In order to confirm these initial results, a continuous monitoring should be performed especially on those PhACs that either because of an elevated consumption or an intrinsic chemical persistence are poorly degraded during winter months due to low temperatures and solar irradiation. It is especially important to identify which of these specific PhACs are in order to recommend their substitution by equally effective and safe substances but also environmentally friendly.
اظهر المزيد [+] اقل [-]Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan النص الكامل
2013
Prakash, Nagan | Latha, Srinivasan | Sudha, Persu N. | Renganathan, N Gopalan
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k ₁, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu²⁺ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.
اظهر المزيد [+] اقل [-]PBDEs in leachates from municipal solid waste dumping sites in tropical Asian countries: phase distribution and debromination النص الكامل
2013
Kwan, Charita S. | Takada, Hideshige | Mizukawa, Kaoruko | Torii, Maiko | Koike, Tatsuya | Yamashita, Rei | Rinawati, | Saha, Mahua | Santiago, Evangeline C.
Polybrominated diphenyl ethers (PBDEs) are extensively used as flame retardants in many consumer products, and leachates from landfills have been identified as one of the possible sources of PBDEs in the environment. Meanwhile, the unprecedented economic and population growths of some Asian countries over the last decade have led to significant increases in the amount of waste containing PBDEs in that region. This study investigates the status of PBDEs in leachates from municipal solid waste dumping sites (MSWDS) in tropical Asian countries. A total of 46 PBDE congeners were measured, both in the adsorbed (n = 24) and dissolved (n = 16) phases, in leachate samples collected, from 2002 to 2010, from ten MSWDS distributed among the eight countries of Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, and Malaysia. PBDEs were predominantly found in the adsorbed phase. Partitioning of PBDEs in the dissolved phase was associated with the presence of dissolved organic matter; the apparent organic carbon-normalized partition coefficients (K′ₒc) of the BDE congeners were lower by two to four orders of magnitude than the K ₒc predicted from the octanol–water partition coefficients (K ₒw). The total PBDE concentrations from mono- to deca-BDEs ranged from 3.7 to 133,000 ng/L, and showed a trend toward higher concentrations in the more populous and industrialized Asian countries. The congener profiles in the leachates basically reflected the composition of PBDE technical mixtures. The occurrence of congeners not contained, or in trace concentrations, in technical products (e.g., BDEs 208, 207, 206, 202, 188, 179, 49, 17/25, 8, 1) was observed in most of the leachate samples, suggesting the debromination of technical mixtures, including BDE-209, in the MSWDS of tropical Asian countries. Moreover, the temporal trend indicated the reduction of BDE-209 over time, with a corresponding increase in and/or emergence of lower brominated PBDE congeners. The results indicated that MSWDS of tropical Asian countries are potential sources of environmental PBDEs, which may be transported to the aquatic environment via dissolution with dissolved organic matter. MSWDS could be amplifiers of PBDE toxicity in the environment, possibly through debromination.
اظهر المزيد [+] اقل [-]Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO₂ core–shell structured nanoparticles النص الكامل
2013
Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO nanoparticles comprising of Ag core and TiO shell (Ag@TiO) have unique photocatalytic property of inhibition of electron-hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO nanoparticles were characterized using thermogravimetric-differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO were found to be pH 3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH)SO as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir-Hinshelwood model. Ag@TiO catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.
اظهر المزيد [+] اقل [-]