خيارات البحث
النتائج 1351 - 1360 من 6,558
Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary النص الكامل
2020
Xie, Minwei | Wang, Wen-Xiong
Metal contamination in the Pearl River Estuary (PRE) is persistent-, yet a comprehensive understanding of distribution and behavior of metals in surface water of this large, multi-source estuary is still lacking. In the present study, water samples from 24 sites spanning the whole estuary during the dry and wet season were collected and fractioned. Trace metal concentrations in samples were then determined following a preconcentration technique using Nobias Chelate-PA1 resin. Distribution of trace metals exhibited variability along and across estuary, as a result of estuarine mixing, external metal loadings, addition and removal. Behavior of metals was contrasting between the dry and wet seasons, exhibiting metal-specific intercorrelations and dynamics. Colloidal metals (Mn, Ni and Cd) were primarily present in upper estuary and areas affected by external contaminant loading. Colloidal Cu was the only metal that was ubiquitous in the estuary in both seasons. It showed a high affinity for small-size organic colloids (likely fulvic acid) during the dry season. Overall, the present study demonstrated the multi-source character of the PRE and that the behavior of trace metals was controlled by the coupling of hydrologic and geochemical processes, with anthropogenic perturbations.
اظهر المزيد [+] اقل [-]Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice النص الكامل
2020
Liu, Jianhui | Li, Xiangyang | Zhou, Guiqing | Sang, Yujian | Zhang, Yue | Zhao, Yanzhi | Ge, Wei | Sun, Zhiwei | Zhou, Xianqing
Silica nanoparticles (SiNPs) can reduce both quality and quantity of sperm via inhibiting the progress of meiosis and mitosis and inducing apoptosis of spermatogenic cells, however, their specific mechanism and effects on the later stage of spermatogenesis are still unclear. To investigate the effects of SiNPs on the reproductive system, male mice were treated with SiNPs (0, 1.25, 5 and 20 mg/kg.bw) via intratracheal instillation once every 3 days and for a total of 15 days. Results revealed that exposure to SiNPs induced reduction in the rate of sperm activity, histological abnormalities in seminiferous epithelium as well as apoptosis of spermatogenic cells, which are associated with decreased level of Lethal (3) malignant brain tumor like 2 (L3MBTL2) and activation of DNA damage-p53-mitochondrial apoptosis pathways. Moreover, reduction in L3MBTL2 level caused by SiNPs also led to the lower expression of RNF8-ubH2A/ubH2B pathway, thus resulting in incomplete histone-to-protamine exchange. These results suggest that the inhibition of L3MBTL2 expression caused by SiNPs not only activates DNA damage-p53-mitochondrial apoptosis pathway leading to the apoptosis of spermatogenic cells, but also inhibits RNF8-ubH2A/ubH2B pathway resulting in incomplete histone-to-protamine exchange, thereby affected spermatogenesis. This indicates that L3MBTL2 plays an important role in reproductive toxicity of males caused by SiNPs.
اظهر المزيد [+] اقل [-]Personal exposure to fine particulate matter and renal function in children: A panel study النص الكامل
2020
Liu, Miao | Guo, Wenting | Cai, Yunyao | Yang, Huihua | Li, Wenze | Yang, Liangle | Lai, Xuefeng | Fang, Qin | Ma, Lin | Zhu, Rui | Zhang, Xiaomin
There is a lack of evidence regarding the association of short-term exposure to fine particulate matter (PM₂.₅) with renal function in children and its underlying mechanism. We included 105 children aged 4–13 years from a panel study conducted in Wuhan, China with up to 3 repeated visits across 3 seasons from October 9, 2017 to June 1, 2018. We measured personal real-time PM₂.₅ exposure concentration continuously for 72 h preceding each round of health examinations that included serum creatinine and cytokines. Linear mixed-effects models were performed to estimate the effects of PM₂.₅ on estimated glomerular filtration rate (eGFR) over various lag times, and a mediation analysis was applied for the role of cytokines in association between PM₂.₅ and eGFR. Results showed that personal exposure to PM₂.₅ was dose-responsive related to decreased eGFR within lag 2 days. The effect was the strongest at lag 0 day with estimation of −1.69% [95% confidence interval (CI): -2.27%, −1.10%] in eGFR by a 10-μg/m³ increase in PM₂.₅, and reached peak at lag 3 h, then declined over time. Such inverse relationships were more evident among children aged 4–6 years, or boys or those who lived proximity to major roadways <300 m. Notably, eGFR still held on to decrease even when PM₂.₅ was below Class II Chinese ambient air quality standard at lag 0 day. Moreover, the effect of PM₂.₅ on eGFR was significantly reduced in children with high and medium levels of serum chemokine ligand 27 (CCL27), but not in those with low CCL27. Furthermore, CCL27 was positively relevant to PM₂.₅, and mediated proportion of CCL27 ranged from 3.75% to 6.61% in relations between PM₂.₅ and decreased eGFR over various lag times. In summary, short-term PM₂.₅ exposure might be dose-responsive associated with reduced eGFR whereby a mechanism partly involving CCL27 among healthy children.
اظهر المزيد [+] اقل [-]Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study النص الكامل
2020
Imran, Muhammad | Khan, Zia Ul Haq | Iqbal, Muhammad Mohsin | Iqbal, Jibran | Shah, Noor Samad | Munawar, Saba | Ali, Shafaqat | Murtaza, Behzad | Naeem, Muhammad Asif | Rizwan, Muhammad
Chromium (Cr) poses serious consequences on human and animal health due to its potential carcinogenicity. The present study aims at preparing a novel biochar derived from Chenopodium quinoa crop residues (QBC), its activation with magnetite nanoparticles (QBC/MNPs) and strong acid HNO₃ (QBC/Acid) to evaluate their batch and column scale potential to remove Cr (VI) from polluted water. The QBC, QBC/MNPs and QBC/Acid were characterized with SEM, FTIR, EDX, XRD as well as point of zero charge (PZC) to get an insight into their adsorption mechanism. The impact of different process parameters including dose of the adsorbent (1–4 g/L), contact time (0–180 min), initial concentration of Cr (25–200 mg/L) as well as solution pH (2–8) was evaluated on the Cr (VI) removal from contaminated water. The results revealed that QBC/MNPs proved more effective (73.35–93.62-%) for the Cr (VI) removal with 77.35 mg/g adsorption capacity as compared with QBC/Acid (55.85–79.8%) and QBC (48.85–75.28-%) when Cr concentration was changed from 200 to 25 mg/L. The isothermal experimental results follow the Freundlich adsorption model rather than Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherm models. While kinetic adsorption results were well demonstrated by pseudo second order kinetic model. Column scale experiments conducted at steady state exhibited excellent retention of Cr (VI) by QBC, QBC/MNPs and QBC/Acid at 50 and 100 mg Cr/L. The results showed that this novel biochar (QBC) and its modified forms (QBC/Acid and QBC/MNPs) are applicable with excellent reusability and stability under acidic conditions for the practical treatment of Cr (VI) contaminated water.
اظهر المزيد [+] اقل [-]Thermal discharge influences the bioaccumulation and bioavailability of metals in oysters: Implications of ocean warming النص الكامل
2020
Lan, Wang-Rong | Huang, Xu-Guang | Lin, Lu-xiu | Li, Shun-Xing | Liu, Feng-Jiao
Human-induced temperature changes influence coastal regions, both via thermal pollution and ocean warming, which exerts profound effects on the chemistry of metals and the physiology of organisms. However, it remains unknown whether the increased temperature of discharged water or ocean warming, as a result of climate change, lead to an increase of human health risks associated with the consumption of sea foods. In this study, the influence of temperature on metal accumulation by oysters was studied in individuals collected from a coastal area affected by the thermal water discharge of the Houshi Power Plant, China. The bioaccumulation factor (BAF) and oral bioavailability (OBA) of metals in oysters was determined. Elevated temperatures led to an increase in BAF for Cu, Zn, Hg, and Cd (p < 0.05), but no change was observed for As and Pb (p > 0.05). The OBA for Cd, As, and Pb correlated positively to elevated temperatures (p < 0.05). However, for Cu and Zn, OBA was negatively correlated with increasing temperature (p < 0.05). As, Pb, and Cd in the trophically available metal (defined as a sum of heat-stable proteins, heat-denaturable proteins, and organelles) was significantly elevated at the highest temperature seawater site (site A) compared to the lowest seawater site (site B). Thus, the irregular variation of OBA for each metal may be the result of variations in the subcellular distribution of metals and the protein quality influenced by the increased temperature. Moreover, the increased temperature and increased the hazard quotient values of As and Cd (p < 0.05 for As, n = 6, p < 0.05 for Cd, n = 6), which provided an indication of the potential risks of the consumption of oysters or other seafood to future warming under climate change scenarios.
اظهر المزيد [+] اقل [-]Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments النص الكامل
2020
Madureira, Joana | Slezakova, Klara | Costa, Carla | Pereira, Maria Carmo | Teixeira, João Paulo
Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM₁₀, PM₂.₅) and number (N₂₀₋₁₀₀₀) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM₁₀, PM₂.₅, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM₂.₅ (mean = 53 μg m⁻³) exceeded limit of 25 μg m⁻³, for PM₁₀ (mean = 57 μg m⁻³) 41% of homes demonstrated average levels higher than 50 μg m⁻³, thus indicating potential risks. Indoor PM₁₀ was mostly (82–99%) composed of PM₂.₅, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 10³ # cm⁻³) were higher than outdoors (mean = 10.0 × 10³ # cm⁻³). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.
اظهر المزيد [+] اقل [-]Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community النص الكامل
2020
Aminov, Zafar | Carpenter, David O.
The metabolic syndrome (MetS) is a group of diseases that tend to occur together, including diabetes, hypertension, central obesity, cardiovascular disease and hyperlipidemia. Exposure to persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) has been associated with increased risk of development of several of the components of the MetS. The goal of this study is to determine whether the associations with POPs are identical for each of the components and for the MetS. The subject population was 601 Native Americans (Akwesasne Mohawks) ages 18 to 84 who answered a questionnaire, were measured for height and weight and provided blood samples for clinical chemistries (serum lipids and fasting glucose) and analysis of 101 PCB congeners and three OCPs [dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB) and mirex]. Associations between concentrations of total PCBs and pesticides, as well as various PCB congener groups with each of the different components of the MetS were determine so as to ask whether there were similar risk factors for all components of the MetS. After adjustment for other contaminants, diabetes and hypertension were strongly associated with lower chlorinated and mono-ortho PCBs, but not other PCB groups or pesticides. Obesity was most closely associated with highly chlorinated PCBs and was negatively associated with mirex. High serum lipids were most strongly associated with higher chlorinated PCBs and PCBs with multiple ortho-substituted chlorines, as well as total pesticides, DDE and HCB. Cardiovascular disease was not closely associated with levels of any of the measured POPs. While exposure to POPs is associated with increased risk of most of the various diseases comprising the MetS, the specific contaminants associated with risk of the component diseases are not the same.
اظهر المزيد [+] اقل [-]Application of Nanoscience in Self-cleaning Properties of Concrete Facade for Development of Sustainable Environment النص الكامل
2020
Seyedeh Fatemeh Khoshkalam Soleimandarabi | Raheleh Rostami | Mehdi Nezhadnaderi
Using mineral admixtures in cement composites as a way to improve their mechanical and sustainable environmental properties is a common practice in concrete technology. Among them nano-silica effectively influences the composite's early and long-term properties. In this study, the effect of different percentages of TiO2 (0, 2.5 and 5 %) on self-cleaning properties and water absorption of cement composites containing nano-silica were investigated. according to the use of different cementitious material (nano-silica) and TiO2 in mix proportions, to obtain mixtures with a desirable workability, superplasticizer was added in different volume percentages.Better size distribution and pore refinement lead to a denser cement matrix with low porosity which in turn considerably lower the water absorption of the cement composites. the maximum final water absorption according to ASTM C497 is 9% for method A and 8.5% for method B. Comparsions of water absorption tests as a result of adding of TiO2 and nano-silica in concrete show that the maximum final water absorption is 4.9% in N1 design mixture and the minimum final water absorption is 4.3% in N2 design mixture.The incorporation of TiO2 has positively affected the results for nano-silica containing specimens. A decrease of 6.5% and 11.1% between N1 and N3 respectively shows the positive effect of TiO2 on decrease of water absorption. The results show that TiO2 along with nanosilica has great potential for improving the environmental and self- cleaning properties of concrete facades of buildings in cities exposed to high levels of cleanliness.
اظهر المزيد [+] اقل [-]Typology of Environmental Crimes in Iran (Case Study: Crimes Related to Environmental Pollution) النص الكامل
2020
Hossein Rabani | Askar Jalalian | Mansoor Pournouri
The purpose of the research is to identify the types of environmental pollution crimes in Iran. This research is a theoretical type that has been done by survey and analysis and has been done in 3 stages. Initially, an initial list of environmental crimes was used by a semi-structured interview method. Sampling was determined by the targeted method and the sample size was 169 people. All interviews were implemented and coded as text. In the next step, using expert opinions and the method of pairwise comparison, environmental crimes of weighting and their importance coefficient were determined. Then, by inquiring from the legal offices of the relevant organizations, the statistics of violations and environmental crimes by the provinces of the country between the years 2017 to 2019 were obtained. The results showed that the main crimes of environmental pollution in Iran can be divided into 8 main categories. Also, 23 criteria were determined for them. Among the eight crimes of environmental pollution, the highest weight belonged to air pollution (0.876) and then water pollution (0.797). Also; the lowest weight was allocated to wave pollution (0.114). A comparative comparison between environmental pollution crimes showed that between 2017 and 2019, statistically, the highest rate of crime was related to waste pollution and then water pollution. Mazandaran province with 6674 cases of environmental crimes in the top provinces of the country and Khorasan Razavi province was introduced as the last province with 223 cases of environmental crimes.
اظهر المزيد [+] اقل [-]Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems النص الكامل
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, C. | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, A.A. | Penna, Antonella | Corsi, Ilaria
Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems النص الكامل
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, C. | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, A.A. | Penna, Antonella | Corsi, Ilaria
Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS–COOH NPs, 90 nm) for 15 days (1, 10, 50 μg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms’ fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface.
اظهر المزيد [+] اقل [-]Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems النص الكامل
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, Claudia | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, Albert A. | Penna, Antonella | Corsi, Ilaria
Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS–COOH NPs, 90 nm) for 15 days (1, 10, 50 μg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms’ fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor.S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom’s chain length and the adhesion of PS NPs onto the algal surface.
اظهر المزيد [+] اقل [-]