خيارات البحث
النتائج 1361 - 1370 من 1,953
5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape
2013
Baṣārat Alī, Es. | Huang, C. R. | Qi, Z. Y. | Ali, Shafaqat | Daud, M. K. | Geng, X. X. | Liu, H. B. | Zhou, W. J.
Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round in shape and contained thylakoids membranes and grana, but starch grains were not found in chloroplast comparatively to other treatments. On the basis of our results, we can conclude that ALA has a promotive effect which could improve plant survival under Cd stress.
اظهر المزيد [+] اقل [-]Effect of ethylenediamine-N,N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation
2013
Huang, Wenyu | Brigante, Marcello | Wu, Feng | Hanna, Khalil | Mailhot, Gilles
The main disadvantage of using iron mineral in Fenton-like reactions is that the decomposition rate of organic contaminants is slower than in classic Fenton reaction using ferrous ions at acidic pH. In order to overcome these drawbacks of the Fenton process, chelating agents have been used in the investigation of Fenton heterogeneous reaction with some Fe-bearing minerals. In this work, the effect of new iron complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), on heterogeneous Fenton and photo-Fenton system using goethite as an iron source was tested at circumneutral pH. Batch experiments including adsorption of EDDS and bisphenol A (BPA) on goethite, H₂O₂ decomposition, dissolved iron measurement, and BPA degradation were conducted. The effects of pH, H₂O₂ concentration, EDDS concentration, and goethite dose were studied, and the production of hydroxyl radical (•OH) was detected. The addition of EDDS inhibited the heterogeneous Fenton degradation of BPA but also the formation of •OH. The presence of EDDS decreases the reactivity of goethite toward H₂O₂ because EDDS adsorbs strongly onto the goethite surface and alters catalytic sites. However, the addition of EDDS can improve the heterogeneous photo-Fenton degradation of BPA through the propagation into homogeneous reaction and formation of photochemically efficient Fe-EDDS complex. The overall effect of EDDS is dependent on the H₂O₂ and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O ₂ •⁻ to generate Fe(II) species from Fe(III) reduction. Low concentrations of H₂O₂ (0.1 mM) and EDDS (0.1 mM) were required as optimal conditions for complete BPA removal. These findings regarding the capability of EDDS/goethite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.
اظهر المزيد [+] اقل [-]Characteristics of nano-/ultrafine particle-bound PAHs in ambient air at an international airport
2013
Lai, Chia-Hsiang | Chuang, Kuen-Yuan | Chang, Jin-Wei
Concentrations of 22 polycyclic aromatic hydrocarbons (PAHs) were estimated for individual particle-size distributions at the airport apron of the Taipei International Airport, Taiwan, on 48 days in July, September, October, and December of 2011. In total, 672 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI. Particle-bound PAHs (P-PAHs) were analyzed by gas chromatography with mass selective detector (GC/MSD). The five most abundant species of P-PAHs on all sampling days were naphthalene (NaP), phenanthrene (PA), fluoranthene (FL), acenaphthene (AcP), and pyrene (Pyr). Total P-PAHs concentrations were 152.21, 184.83, and 188.94 ng/m³ in summer, autumn, and winter, respectively. On average, the most abundant fractions of benzo[a]pyrene equivalent concentration (BaPeq) in different molecular weights were high-weight PAHs (79.29 %), followed by medium-weight PAHs (11.57 %) and low-weight PAHs (9.14 %). The mean BaPeq concentrations were 1.25 and 0.94 (ng/m³) in ultrafine particles (<0.1 μm) and nano-particles (<0.032 μm), respectively. The percentages of total BaPeq in nano- and ultrafine particulate size ranges were 52.4 % and 70.15 %, respectively.
اظهر المزيد [+] اقل [-]Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators
2013
Hu, Jicheng | Zheng, Minghui | Liu, Wenbin | Li, Changliang | Nie, Zhiqiang | Liu, Guorui | Zhang, Bing | Xiao, Ke | Gao, Lirong
Nine typical waste incinerating plants were investigated for polychlorinated naphthalene (PCN) contents in their stack gas. The incinerators investigated include those used to incinerate municipal solid, aviation, medical, and hazardous wastes including those encountered in cement kilns. PCNs were qualified and quantified by isotope dilution high resolution gas chromatography–high resolution mass spectrometry techniques. An unexpectedly high concentration of PCNs (13,000 ng Nm⁻³) was found in the stack gas emitted from one waste incinerator. The PCN concentrations ranged from 97.6 to 874 ng Nm⁻³ in the other waste incinerators. The PCN profiles were dominated by lower chlorinated homologues, with mono- to tetra-CNs being the main homologues present. Furthermore, the relationships between PCNs and other unintentional persistent organic pollutants involving polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, hexachlorobenzene, and pentachlorobenzene were examined to ascertain the closeness or otherwise of their formation mechanisms. A good correlation was observed between ΣPCN (tetra- to octa-CN) and ΣPCDF (tetra- to octa-CDF) concentrations suggesting that a close relationship may exist between their formation mechanisms. The results would provide an improved understanding of PCN emissions from waste incinerators.
اظهر المزيد [+] اقل [-]Spontaneous vegetation succession at different central European mining sites: a comparison across seres
2013
Prach, Karel | Lencová, Kamila | Řehounková, Klára | Dvořáková, Helena | Jírová, Alena | Konvalinková, Petra | Mudrák, Ondřej | Novák, Jan | Trnková, Romana
We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.
اظهر المزيد [+] اقل [-]Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes
2013
Ahmad, Mahtab | Lee, Sang Soo | Oh, Sang-Eun | Mohan, Dinesh | Moon, Deok Hyun | Lee, Young Han | Ok, Yong Sik
Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8-10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.
اظهر المزيد [+] اقل [-]Polyaromatic hydrocarbon exposure: an ecological impact ambiguity
2013
Ball, Andrew | Truskewycz, Adam
Polyaromatic hydrocarbons (PAHs) represent a fraction of petroleum hydrocarbons and are currently one of the foremost sources of generating energy in today’s contemporary society. However, evidence highlighted in this review show that PAH pollution, as a result of oil spills, hazardous PAH-contaminated working environments and technologies which do not efficiently utilise fuels, as well as natural sources of emissions (e.g. forest fires) may have significant health implications for all taxa. The extent of damage to organisms from PAH exposure is dependent on numerous factors including degree and type of PAH exposure, nature of the environment contaminated (i.e. terrestrial or aquatic), the ability of an organism to relocate to pristine environments, type and sensitivity of organism to specific hydrocarbon fractions and ability of the organism to metabolise different PAH fractions. The review highlights the fact that studies on the potential damage of PAHs should be carried out using mixtures of hydrocarbons as opposed to individual hydrocarbon fractions due to the scarcity of individual fractions being a sole contaminant. Furthermore, potential damage of PAH-contaminated sites should be assessed using an entire ecological impact outlook of the affected area.
اظهر المزيد [+] اقل [-]Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan
2013
Prakash, Nagan | Latha, Srinivasan | Sudha, Persu N. | Renganathan, N Gopalan
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k ₁, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu²⁺ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.
اظهر المزيد [+] اقل [-]Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate
2013
Ong, Soon-An | Min, Ohm-Mar | Ho, Li-Ngee | Wong, Yee-Shian
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir–Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
اظهر المزيد [+] اقل [-]Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH
2013
Bährs, Hanno | Putschew, Anke | Steinberg, Christian E. W.
The interaction of natural organic matter with phytoplankton communities in freshwater ecosystems is an intensively studied subject matter. Previous studies showed that apparently plant-derived phenols were able to inhibit algal and cyanobacterial growth. Furthermore, it was also assumed that humic substances (HS), which comprise the major part of dissolved organic carbon in freshwater ecosystems, directly interact with freshwater phototrophs. For example, quinoid building blocks of HS were thought to be algicidal. To identify key environmental variable for the toxic action of potential quinone algicides, we tested the toxicity of hydroquinone (HQ) to different eukaryotic and prokaryotic freshwater phototrophs in terms of growth performance and investigated also the effect of HQ oxidation at different pH values on its algicidal potential. It was shown that cyanobacterial species were much more susceptible to hydroquinone than coccal green algal species were, with Microcystis aeruginosa being the most sensitive species by far. In addition, it was obvious that the aging of hydroquinone-stock solution at pH 11 led to polymerization and, by this process, to a total loss of toxicity; whereas the algicidal potential sustained if the polyphenol was kept at pH 7. Since most lakes with heavy blooms of phototrophs possess pH values clearly above 7.0, it is questionable, if polyphenols in general and quinones in particular are the effective chemicals and if litter and straw leachates are applied as means to combat algal and cyanobacterial blooms.
اظهر المزيد [+] اقل [-]