خيارات البحث
النتائج 1391 - 1400 من 7,279
BDE-209 and TCDD enhance metastatic characteristics of melanoma cells after chronic exposure
2022
Silva Filho, Benisio Ferreira | Filipak Neto, Francisco | Marchi, Micheli de | Moggio, Erick Laurent | Rossi, Izadora Volpato | Sabatke, Bruna | Ramirez, Marcel Ivan | Lucena, Miguel Clodomiro dos Santos | Todeschini, Adriane Regina | Oliveira Ribeiro, Ciro Alberto de
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and BDE-209 (decabromodiphenyl ether) are persistent organic pollutants (POPs) produced by industrial activities and associated with several diseases. TCDD is a known human carcinogen, but few studies investigated about the effects of exposure to both compounds, i.e., whether BDE-209 and TCDD can render tumor cells more aggressive and metastatic. In the current study we investigated if the exposure of B16–F1 and B16–F10 melanoma murine cells to environmental relevant concentrations of TCDD and BDE-209 at 24 h and 15-day exposure modulates the expression of genes related to metastasis, making the cells more aggressive. Both pollutants did not affect cell viability but lead to increase of cell proliferation, including the upregulation of vimentin, MMP2, MMP9, MMP14 and PGK1 gene expression and downregulation of E-cadherin, TIMP2, TIMP3 and RECK, strongly suggesting changes in cell phenotypes defined as epithelial to mesenchymal transition (EMT) in BDE-209 and TCDD-exposed cells. Foremost, increased expression of metalloproteinases and decreased expression of their inhibitors made B16–F1 cells similar the more aggressive B16–F10 cell line. Also, the higher secretion of extracellular vesicles by cells after acute exposure to BDE-209 could be related with the phenotype changes. These results are a strong indication of the potential of BDE-209 and TCDD to modulate cell phenotype, leading to a more aggressive profile.
اظهر المزيد [+] اقل [-]Toxicity of tire wear particles and the leachates to microorganisms in marine sediments
2022
Liu, Yan | Zhou, Hao | Yan, Ming | Liu, Yang | Ni, Xiaoming | Song, Jinbo | Yi, Xianliang
Tire wear particles (TWPs), which are among the microplastic pollutants in the environment, can inevitably accumulate in coastal sediments. The present study comprehensively investigated the effect of pristine TWPs on bacterial community structure in coastal sediments and compared the effect of pristine TWPs and aged TWPs on nine strains of bacteria in sediments. In addition, the effect of the TWP leachate was studied with all the nine bacterial strains and the toxicity-causing substances in the leachate was investigated using Bacillus subtilis. Exposure to TWPs could lead to a shift in bacteria community and affect nitrogen metabolism in marine sediments. Aged TWPs were more toxic than pristine TWPs due to changes in particle surface characteristics. The leachate exhibited greater toxicity than TWPs as well, and Zn was identified to be the major toxicity-causing substance. The overall results of this study are important for understanding the effects of TWPs and the leachates on microorganisms in marine sediments.
اظهر المزيد [+] اقل [-]Microplastics lag the leaching of phenanthrene in soil and reduce its bioavailability to wheat
2022
Zhu, Jiahui | Liu, Shiqi | Shen, Yu | Wang, Jia | Wang, Huiqian | Zhan, Xinhua
Microplastics wildly occur in soil and they can become the carriers of persistent contaminants. However, the influence of microplastics on polycyclic aromatic hydrocarbons vertical translocation in the soil system after rainfall is limitedly understood. Here, experiments were conducted to study the influence of polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC) microplastics on the leaching behavior and bioavailability of phenanthrene (Phe). The adsorption capacity of phenanthrene on the microplastics followed the order of PS > PE > PVC. The Phe concentrations in the top soil layer after 15 days of leaching with water were 30.25, 28.32 and 27.25 mg kg⁻¹ for the treatments of Phe-PS, Phe-PE and Phe-PVC respectively, which is consistent with the adsorption capacities of microplastics. The concentrations of Phe were correlated with the microplastic adsorption capacities at soil depths of 5–45 cm. Under long-term leaching, Phe could reach the deeper soil layer. Phe concentrations significantly decreased in the leachate over time. Phe concentrations in wheat had a positive correlation with that in leachate/leached top soil layer. Our findings are beneficial to accurately evaluate the ecological risk of the combined contamination of PAHs and microplastics, and improve the understanding of the environmental behaviors of different microplastics.
اظهر المزيد [+] اقل [-]Characterization of arsenic-metabolizing bacteria in an alkaline soil
2022
Zhang, Miaomiao | Lu, Guimei | Xiao, Tangfu | Xiao, Enzong | Sun, Xiaoxu | Yan, Wangwang | Liu, Guoqiang | Wang, Qi | Yan, Geng | Liu, Huaqing | Sun, Weimin
Arsenite (As(III)) is more toxic, mobilizable and bioavailable than arsenate (As(V)). Hence, the transformations between As(III) and As(V) are crucial for the toxicity and mobility of arsenic (As). However, As transformation and microbial communities involved in alkaline soils are largely unknown. Here we investigate two major pathways of As transformation, i.e., As(III) oxidation and As(V) reduction, and identify the bacteria involved in the alkaline soil by combining stable isotope probing with shotgun metagenomic sequencing. As(III) oxidation and significant increase of the aioA genes copies were observed in the treatments amended with As(III) and NO₃⁻, suggesting that As(III) oxidation can couple with nitrate reduction and was mainly catalyzed by the microorganisms containing aioA genes. As(V) reduction was detected in the treatments amended with As(V) and acetate where the abundance of arrA gene significantly increased, indicating that microorganisms with arrA genes were the key As(V) reducers. Acidovorax, Hydrogenophaga, and Ramlibacter were the putative nitrate-dependent As(III) oxidizers, and Deinococcus and Serratia were the putative respiratory As(V) reducers. These findings will improve our understanding of As metabolism and are meaningful for mapping out bioremediation strategies of As contamination in alkaline environment.
اظهر المزيد [+] اقل [-]Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion
2022
Zhang, Zhenrong | Huang, Yaji | Zhu, Zhicheng | Yu, Mengzhu | Gu, Liqun | Wang, Xinyu | Liu, Yang | Wang, Ruyi
Serious pollution is caused by heavy metals (HMs) emission during sludge combustion treatment, but the addition of minerals has the ability to alleviate the migration of HMs to the gaseous state. In this study, HMs (As, Cr, Zn and Cu) behavior, speciation, and environmental risk during sludge combustion with CaO and montmorillonite (MMT) additive was investigated in the lab-scale tube furnace. The results showed that the sludge combustion was mainly determined by volatile matter. In general, CaO inhibited the volatilization of Cr, Zn, and Cu, but promoted As volatilization. MMT inhibited the volatilization of HMs, but the effect was not obvious at high temperatures. Besides, the improvement of retention effect was not found for Cr and Cu with the increase of CaO at 1000 °C, there might exist threshold value for CaO on HMs retention process. Meanwhile, CaO increased acid-soluble fraction of As significantly at high temperatures, decreased residual fraction of Cr by oxidation, converted Zn and Cu to residual fraction. MMT increased the acid-soluble fraction of As and residual fraction of Cr. In view of the HMs environmental risk in ash, the combustion temperature of sludge was necessary to control under 1000 °C and minerals additive amount was needed to manage above 1000 °C.
اظهر المزيد [+] اقل [-]Association of ambient air pollution exposure and its variability with subjective sleep quality in China: A multilevel modeling analysis
2022
Wang, Lingli | Zhang, Jingxuan | Wei, Jing | Zong, Jingru | Lü, Chunyu | Du, Yajie | Wang, Qing
Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a large sample in China, this study linked individual air pollutant exposure levels and temporal variability with subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and trajectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean concentration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) and ≤10 μm (PM₁₀) led to 0.4% (95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM₂.₅ and PM₁₀ were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. Thus, sleep health improvements should account for air pollution exposure and its variations in China under relatively high air pollution levels.
اظهر المزيد [+] اقل [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
اظهر المزيد [+] اقل [-]Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: New insights and improvement of previous predictions
2022
Comte, Irina | Pradel, Alice | Crabit, Armand | Mottes, Charles | Pak, Lai Ting | Cattan, Philippe
Chlordecone (CLD), was widely applied in banana fields in the French West Indies from 1972 to 1993. The WISORCH model was constructed to assess soil contamination by CLD and estimated that it lasts from 100 to 600 years, depending on leaching intensity and assuming no degradation. However, recent studies demonstrated that CLD is degraded in the environment, hence questioning the reliability of previous estimations. This paper shows how to improve the model and provides insights into the long-term dissipation of CLD. In-situ observations were made in nearly 2545 plots between 2001 and 2020, and 17 plots were sampled at two dates. Results of soil analyses showed an unexpected 4-fold decrease in CLD concentrations in the soil, in contrast to simulations made using the first version of WISORCH at the time. Neither erosion, nor CLD leaching explained these discrepancies. In a top-down modeling approach, these new observations of CLD concentrations led us to implement a new dissipation process in the WISORCH model that corresponds to a DT50 dissipation half-life of 5 years. The new version of the improved model allowed us to update the prediction of the persistence of soil pollution, with soil decontamination estimated for the 2070s. This development calls for re-evaluation of soil pollution status. Further validation of the new version of WISORCH is needed so it can contribute to crop management on contaminated soil.
اظهر المزيد [+] اقل [-]Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice
2022
Li, Yunping | Guo, Tai L. | Xie, Heidi Qunhui | Xu, Li | Liu, Yin | Zheng, Liping | Yu, Shuyuan | Chen, Guomin | Ji, Jiajia | Jiang, Shuai | Xu, Dan | Hang, Xiaoming | Zhao, Bin
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4⁺ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
اظهر المزيد [+] اقل [-]The exposure of OPFRs in fish from aquaculture area: Backward tracing of the ecological risk regulation
2022
Yang, Jiawen | Li, Xixi | Zhao, Yuanyuan | Yang, Hao | Li, Yu
In this study, we backward traced and controlled the pollution of organophosphorus flame retardants (OPFRs) in aquaculture areas from the standpoints of terminal treatment, migration and transformation resistance, and source molecular substitution technology. A regulatory plan to considerably reduce the combined biotoxicity of fish exposed to OPFRs in aquaculture areas and significantly improves the biodegradation of sewage treatment and the efficiency of soil plant-microorganism combined remediation was formulated. Environmentally friendly alternatives of OPFRs were designed. The supplementation scheme of aquatic feed significantly alleviates the toxicity risk of fish exposure to OPFRs in aquafarm (reduced by 121.02%). The regulatory scheme of external stimulus to enhance the biodegradation of OPFRs in wastewater treatment process included an H₂O₂ concentration of 400 mg/L, voltage gradient of 1.5 V/m, and pH of 6.5 can improve the degradation capacity of OPFRs molecules by 88.86%. The degradation of OPFRs can be enhanced by plant-microorganism combined remediation (up to 98.64%) by growing plants whose primary function is phytoextraction in soils dominated by Sphingopyxis sp. and Rhodococcus sp. A 3D-QSAR pharmacophore model based on apoptosis toxicity, mitochondrial dysfunction, oxidative stress response, reproductive, neurotoxicity, gill-inhalation combined toxicity of fish exposed to OPFRs in aquafarm was fabricated. The recommended aquatic feed scheme and the control scheme of enhanced degradation of OPFRs by sewage treatment and soil environment had better applicability for the new-designed OPFRs substitution molecules (the maximum combined toxicity/degradation is reduced/increased by 75.46% and 63.24%, respectively). In this paper, a technical scheme of OPFRs terminal treatment, process regulation, and source control was applied as a cradle-to-grave approach to reduce the ecological toxicity risk of fish exposed to OPFRs in aquaculture areas providing theoretical support for the realization of OPFRs environmental pollution control.
اظهر المزيد [+] اقل [-]