خيارات البحث
النتائج 1401 - 1410 من 3,201
Simultaneous Multifunctional Sorption of PFOS and Cr(VI) on Activated Carbon Prepared by One-Step Microwave Activation
2015
Zhu, Zhibao | Zhou, Qin | Zhang, Meiyi | He, Guangzhi | Pan, Gang | Zhao, Yuan
Multifunctional sorbents, activated carbons (AC), were prepared by one-step microwave activation utilizing peanut shells and sunflower seed husks. The influence of the original particle size of raw materials on the yield and specific surface area of AC was studied, which reached 33.5 % and 1133.27 m²/g, respectively. The repetitive and competitive uptakes of perfluorooctane sulfonate (PFOS) and chromium were applied to investigate the sorption properties of AC. The sorption mechanisms were demonstrated using sulfur K-edge X-ray absorption near edge structure analysis (XANES). In the repetitive experiment, AC made from peanut shells (ACP₀₅) still retained 70 % removal efficiency of PFOS after the fourth sorption because sorbed PFOS might form a new organic phase that supplied effective sites for the hydrophobic partition of PFOS. However, the removal efficiency of Cr(VI) decreased dramatically from 60 to 11 % after the fourth uptake because electrostatic attraction was its only removal pathway. In the binary solutes system, ACP₀₅ possessed perfect sorption performance for both PFOS and Cr(VI), which were 885 and 192 mg/g, respectively. In the multivariate solutes system, the XANES spectra indicated that the thiol functional group existed in the resulting AC and a metal chelate was formed between thiol and Zn²⁺/Cu²⁺. Hence, the presence of Zn²⁺/Cu²⁺ further promoted the removal of PFOS and Cr(VI) through the electrostatic attraction between the anions and positive metal chelate.
اظهر المزيد [+] اقل [-]Subsidence from an Underground Coal Mine and Mine Wastewater Discharge Causing Water Pollution and Degradation of Aquatic Ecosystems
2015
Wright, Ian A. | McCarthy, Blake | Belmer, Nakia | Price, Philip
This study examined a single underground coal mine and investigated two aspects of its operation: the disposal of the mine waste through a discharge to a nearby river and the impact of subsidence from an underground longwall to a small waterway above. Water quality of the two waterways was monitored over a 2-year period with a monthly investigation over a 6-month period, which included collection of stream macroinvertebrates. Both mine activities modified surface water geochemistry and macroinvertebrate communities. Mean electrical conductivity (EC) increased in surface waters below the mine discharge, rising 4.8 times from (186 μS/cm) upstream to 1078 μS/cm below the waste inflow. Mean EC increased in a small stream that was disturbed by subsidence from longwall mining, rising 3.8 times from (247 μS/cm) upstream to 1195 μS/cm below. The mineral constituents of the increased salinities were different. The coal mine wastewater discharge was enriched with sodium and bicarbonate ions compared to sodium and chloride ions in the subsidence affected creek. Both the waste discharge and the subsidence caused increases in the concentrations of zinc by about four times and nickel by 20 to 30 times the background levels. The subsidence reduced dissolved oxygen to ecologically stressful levels and increased iron and manganese concentrations by about 20 times the background levels. Two of the key changes in stream ecosystems were a reduction in the proportion of mayfly larvae downstream of the mine waste discharge and mosquito larvae dominating (60–70 % of total abundance) the invertebrate community in the subsidence affected creek.
اظهر المزيد [+] اقل [-]The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal Zone of the Southern Baltic—Future Perspective
2015
Bełdowska, Magdalena
Despite the decreased emission loads of mercury, historical deposits of this metal in various compartments of the environment may become an additional diffuse source in the future. Global climate change manifests itself in the temperate zone in several ways: warmer winters, shorter icing periods, increased precipitation and heightened frequency of extreme events such as strong gales and floods, all of which cause disturbances in the rate and direction of mercury biogeochemical cycling. The present study was conducted at two sites, Oslonino and Gdynia Orlowo (both in the coastal zone of the Gulf of Gdansk), from which samples were collected once a month between January 2012 and December 2012. In the Southern Baltic region, climate changes can certainly enhance coast to basin fluxes of mercury and the transfer of bioavailable forms of this metal to the food web. They may also, in the future, contribute to uncontrollable increases of mercury in the seawater.
اظهر المزيد [+] اقل [-]Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O 4/Bentonite Nanocomposite
2015
Hashemian, Saeedeh | Ṣaffārī, Ḥusayn | Ragabion, Saeedeh
Fe₃O₄and Fe₃O₄/bentonite were prepared by chemical co-precipitation method. They were characterized by X-ray powder diffraction (XRD), Fourier infrared spectroscopy (FTIR), and transmission electron microscope (TEM). Adsorption of cobalt(II) on the bentonite, Fe₃O₄, and Fe₃O₄/bentonite nanocomposite was studied. The results indicated that the metal oxides mainly occurred in the form of spinel structure of Fe₃O₄and the presence of Fe₃O₄significantly affect the surface area and pore structure of the bentonite. The specific surface area (Brunauer–Emmett–Teller (BET) method) of bentonite, Fe₃O₄, and Fe₃O₄/bentonite were determined to be 34.44, 98.44, and 140.5 m² g⁻¹, respectively. TEM image of Fe₃O₄/bentonite shows the particle diameter at 10 nm. The maximum adsorption capacity of cobalt(II) by Fe₃O₄/bentonite nanocomposite was determined to be 18.76 mg g⁻¹. The adsorption strongly depends on pH, where the removal efficiency increases as the pH turns to alkaline range (pH 9). The results suggest that higher adsorption capacity of composite than bentonite is attributed to the presence of Fe₃O₄. The adsorption process follows pseudo-second-order kinetics. The equilibrium data was analyzed by Langmuir model showing high correlation coefficient. The thermodynamic study of adsorption process showed that the adsorption of Co(II) onto Fe₃O₄/bentonite was carried out spontaneously.
اظهر المزيد [+] اقل [-]Species-Specific Responses to Ozone and Drought in Six Deciduous Trees
2015
Hayes, Felicity | Williamson, Jennifer | Mills, Gina
Saplings of alder (Alnus glutinosa), birch (Betula pendula), hazel (Corylus avellana), beech (Fagus sylvatica), ash (Fraxinus excelsior) and oak (Quercus robur) were exposed to five episodic ozone regimes in solardomes, with treatment means between 16 and 72 ppb. All trees were kept fully watered for the first 5 weeks of exposure, after which half the trees continued to be well-watered, whereas the other half were subjected to a moderate drought by applying approximately 45 % of the amount of water. Species-specific reductions in growth in response to both ozone and drought were found, which could result in reduced potential carbon sequestration in future ozone climates. In well watered conditions, the ozone treatments resulted in total biomass reductions for oak (18 %), alder (16 %), beech (15 %), ash (14 %), birch (14 %) and hazel (7 %) in the 72 ppb compared with the 32 ppb treatment. For beech, there was a reduction in growth in response to ozone in the well-watered treatment, but an increase in growth in response to ozone in the drought treatment, in contrast to the decreased growth that would occur as a result of stomatal closure in response to either the ozone or drought treatment, and therefore assumed to result from changes in hormonal signalling which could result in stomatal opening in combined ozone and drought conditions. For alder, in addition to a decrease in root biomass, there was reduced biomass of root nodules with high compared with low ozone for both drought-treated and well-watered trees. There was also a large reduction in the biomass of nodules from drought trees compared with well-watered. It is therefore possible that changes in the nitrogen dynamics of alder could occur due to reduced nodulation in both drought and elevated ozone conditions.
اظهر المزيد [+] اقل [-]Optimization, Kinetics, Isotherms, and Thermodynamics Studies of Antimony Removal in Electrocoagulation Process
2015
Song, Peipei | Yang, Zhaohui | Zeng, Guangming | Yang, Xia | Xu, Haiyin | Huang, Jing | Wang, Like
In this study, electrocoagulation (EC) with hybrid Fe–Al electrodes was used to remove antimony from contaminated surface water. Response surface methodology was applied to investigate the interactive effects of the operating parameters on antimony removal and optimize these variables. Results showed that the relationship between operating parameters and the response was well described by a second-order polynomial equation. Under the optimal conditions of current density 2.58 mA/cm², pH 5.24, initial concentration 521.3 μg/L, and time 89.17 min, more than 99 % antimony were removed. Besides, the antimony adsorption behavior in EC process was also investigated. Adsorption kinetics and isotherms studies suggested that the adsorption process followed well the pseudo-second-order kinetic model and the Langmuir adsorption model, respectively. Adsorption thermodynamics study revealed that the reaction was spontaneous, endothermic, and thermodynamically favorable. These results further proved that the main mechanism involved in antimony removal in EC process could be chemisorption.
اظهر المزيد [+] اقل [-]Contribution of Coagulation–Flocculation Process for a More Sustainable Pig Slurry Management
2015
Fragoso, R. A. | Duarte, E. A. | Paiva, J.
This paper aims to demonstrate the benefits of using a natural coagulant to enhance gravitational sedimentation of pig slurry. The separation process would lead to a liquid fraction, more biodegradable and with lower nutrient content, and a solid fraction highly concentrated in organic matter. Experimental trials were conducted in order to achieve the following objectives: (i) compare the effect of gravitational sedimentation with coagulation–flocculation process, (ii) compare the efficiency of conventional coagulants (such as aluminium sulphate or ferric chloride) with chitosan biopolymer and (iii) test the optimum coagulation–flocculation operational conditions to slurry sample. Assessment criteria included removal efficiencies but also took into consideration the advantages/disadvantages regarding sludge management. Results showed that gravitational sedimentation process can be improved by addition of coagulants; turbidity and COD removal increased around 2 and 3 times, respectively.
اظهر المزيد [+] اقل [-]Effects of Anaerobic Digestion and Solids Separation on Ammonia Emissions from Stored and Land Applied Dairy Manure
2015
Neerackal, G. M. | Ndegwa, P. M. | Joo, H. S. | Wang, X. | Harrison, J. H. | Heber, A. J. | Ni, J.-Q. | Frear, C.
Field and laboratory studies were conducted to evaluate the effects of anaerobic digestion (AD) and solids-liquid separation on emissions during subsequent storage and land application. The lab storage tests were conducted for 21 days with manure samples obtained at the following four points in a full-scale AD system: raw manure (RM) delivery, raw manure supplemented with other substrates (AD influent), AD effluent, and AD effluent after solids-liquid separation (AD liquid effluent). Ammonia fluxes from stored AD effluent declined from 3.95 to 2.02 g m⁻² day⁻¹. Lower NH₃ fluxes, however, were observed from AD liquid effluent (1.1 g m⁻² day⁻¹) and AD influent (0.25 g m⁻² day⁻¹). Ammonia emissions from full-scale manure storages were similar to those obtained in the lab. Results also indicated significantly lower volatile fatty acid (VFA) in AD effluent and AD liquid effluent compared with that from the AD influent, indicating significant reduction in odor generation potential due to AD and solids-liquid separation processes. Two manure application methods (surface application and manure injection) for both non-AD and AD manures were simulated in the lab and studied for 9 days. Surface-applied non-AD manure exhibited the highest NH₃ flux (0.78 g m⁻² day⁻¹), while injected AD manure led to the lowest NH₃ flux (0.17 g m⁻² day⁻¹). Similar NH₃ emissions results were observed from the field studies. Overall, while AD of dairy manure resulted in significant increases in NH₃ emissions from stored effluent, the AD process significantly reduced NH₃ emissions following application of AD manure on land.
اظهر المزيد [+] اقل [-]Soil Nutrient Assessment and Characterization in a Degraded Central Florida Swamp
2015
Bukata, Benjamin J. III | Osborne, Todd Z. | Szafraniec, Mary L.
Flatford Swamp, a 2800-acre forested wetland in east Manatee County, Florida, serves as the headwaters of the Myakka River. Over the last two decades, Flatford swamp has experienced significant tree mortality. The cause of this mortality, as well as dramatic encroachment of several invasive herbaceous and shrub species, is thought to be linked to hydrologic alterations that resulted in increased inundation during the wet and dry seasons. A biogeochemical characterization of wetland soils was conducted to (1) establish a baseline spatial distribution of soil P and N in Flatford Swamp, (2) determine if soil biogeochemistry could be related to tree mortality, and (3) determine if soil biogeochemical conditions may affect future restoration efforts. Mean total nitrogen and total carbon in sampled soils ranged from 13.8 to 24.9 mg kg⁻¹ and 211 to 468 mg kg⁻¹, respectively, indicating that soils are predominantly organic. Environmental conditions suggest that the nitrate-reduction process occurs readily in Flatford Swamp, and thus N abatement will continue naturally during restoration. Soil total phosphorus content is significantly higher than expected and is likely one of several contributing factors that led to observed changes in vegetation community structure. Levels of total sulfur, total calcium, and conductivity, indicative of agricultural use of groundwater for irrigation, suggest sulfide toxicity as a plausible contributing mechanism in the observed dieback of Nyssa sylvatica var. biflora.
اظهر المزيد [+] اقل [-]Behavior of Fluoride Removal by Aluminum Modified Zeolitic Tuff and Hematite in Column Systems and the Thermodynamic Parameters of the Process
2015
Teutli-Sequeira, A. | Solache-Ríos, M. | Martínez-Miranda, V. | Linares-Hernández, I.
The removal of fluoride from water by an aluminum-modified hematite and a zeolitic tuff using column adsorption techniques, as well as the effects of temperature, were investigated. Column experiments were carried out using aqueous solutions and drinking water with different bed depths. The dynamics of the adsorption process were fitted to Adams–Bohart, Thomas and bed depth service time (BDST) models. The Thomas model was found suitable for the description of breakthrough curve at all experimental conditions, while Adams–Bohart model was only useful for an initial part of dynamic behavior of the removal of fluoride from water by aluminum-modified hematite and zeolitic tuff columns. The highest uptake capacities (3.24 and 2.37 mg/g for the modified zeolitic tuff and hematite respectively) were obtained with a 4-cm bed depth column, an inlet 10 mg/L fluoride solution, and a flow rate of 1 mL/min, but the adsorption capacities decreased when drinking water were used. Experimental data were good fitted to both models, and the parameters of the processes calculated indicated that these materials are suitable for removal of fluoride from water in column systems. Thermodynamic parameters (ΔS, ΔG, and ΔH) were calculated for the aluminum-modified hematite and zeolitic tuff from the sorption data at temperatures between 287 and 333 K, indicating spontaneous and thermodynamically favorable adsorption and suggest that the sorption of fluoride ions by both adsorbents is an endothermic process and the mechanism is physical sorption.
اظهر المزيد [+] اقل [-]