خيارات البحث
النتائج 1401 - 1410 من 8,010
Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river النص الكامل
2021
Kameda, Yutaka | Yamada, Naofumi | Fujita, Emiko
There is increasing concern about the environmental behaviors of microplastics (MPs), in particular fine MPs (FMPs), such as their concentrations, sources, size distributions, and fragmentation by weathering in waters. However, there is little information about size distributions of MP polymer types and their relationships to their sources. Here, we analyzed concentrations, compositions, and size distributions of 18 polymer types of MPs of >20 μm by micro-Fourier transform infrared spectroscopy with a novel pretreatment method in surface waters at five sites from the headwaters to the mouth of a Japanese river, and in influent and effluent from a sewage treatment plant (STP). The microplastic concentrations ranged from 300 to 1240 particles/m³ in surface waters. Cluster analysis identified two primary sources of MPs: residential wastewater at the headwater site and non-point sources from urban areas at downstream sites; concentrations of chemical contaminants from STPs were much higher at the downstream sites. The median particle sizes (D₅₀) of MPs increased in urban areas at the downstream sites and were larger than those in influent and effluent. These results imply the release of larger MPs from non-point sources in urban areas. The size distributions of each polymer and all MPs could be fitted significantly to the Weibull distribution function. Values of D₅₀, shape parameters, and scale parameters estimated from the functions were useful indicators for evaluating size distributions in detail. A significant positive correlation of D₅₀ with the tensile strengths of virgin polymers among 13 dominant polymers detected in the surface water suggests that the fragmentation properties of each polymer are influenced by its physical strength. Multidimensional analysis with concentrations, polymeric compositions, and size distributions of MPs, including FMPs, could provide useful information about their sources and their environmental behaviors.
اظهر المزيد [+] اقل [-]Estimation of lactating mothers’ daily intakes of bisphenol A using breast milk النص الكامل
2021
Gao, Qun | Niu, Yumin | Wang, Bin | Liu, Jiaying | Zhao, Yunfeng | Zhang, Jing | Wang, Yang | Shao, Bing
Breast milk is a unique biological sample that reflects the exposure levels of both lactating mothers and infants. The exposure levels of BPA due to breast milk consumption for infants can be estimated easily, but the method to estimate the total daily intake (TDI) of lactating mothers from breast milk has not yet been established. In this study, BPA concentrations were detected in breast milk samples from 149 lactating mothers from Hunan, China. The median concentration of BPA in breast milk was 0.053 μg/L with a range of 0.001–2.535 μg/L, and a temporal decline trend was found for BPA concentrations in breast milk (p < 0.05). The median intake of BPA via breast milk was 26.8 ng/kg bw/day for 0-3-month-old infants and 7.0 ng/kg bw/day for 4-12-month-old infants. Based on the predicted concentrations of BPA in urine and blood via the conversion coefficients from breast milk, the TDIs of lactating mothers were estimated. The TDIs estimated from the simulated urine concentration were 84.0 ± 175.2 ng/kg bw/day for 0-3-month-old infants' mothers and 36.9 ± 80.8 ng/kg bw/day for 4-12-month-old infants' mothers. The dietary daily intakes estimated from the simulated blood concentration were 579.6 ± 370.8 ng/kg bw/day for 0-3-month-old infants' mothers and 280.1 ± 195.2 ng/kg bw/day for 4-12-month-old infants’ mothers. When assuming the dietary daily intakes in Hunan of the fifth total diet study (TDS) as the “true” total dietary intake of our population, the contribution of diet was estimated to be 63.7%, which suggested that non-dietary BPA exposure may be underestimated.
اظهر المزيد [+] اقل [-]Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: A potential global threat for coral reefs النص الكامل
2021
Ranjbar Jafarabadi, Ali | Dashtbozorg, Mehdi | Raudonytė-Svirbutavičienė, Eva | Riyahi Bakhtiari, Alireza
Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g⁻¹ dw in coral tissue, from 6.0 to 144 ng g⁻¹dw in the skeleton, and from 55.0 to 240 ng g⁻¹dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C₁₃ (for SCCPs) and C₁₇ (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.
اظهر المزيد [+] اقل [-]Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study النص الكامل
2021
Conte, A. | Otu-Larbi, F. | Alivernini, A. | Hoshika, Y. | Paoletti, E. | Ashworth, K. | Fares, S.
Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO₂. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O₃ m⁻² s⁻¹ were tested.The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m⁻² s⁻² produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m⁻² s⁻¹ or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0–1 nmol m⁻² s⁻¹). A “dynamic threshold” obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m⁻² y⁻¹ and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O₃ m⁻² s⁻¹), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.
اظهر المزيد [+] اقل [-]Fusion of land use regression modeling output and wireless distributed sensor network measurements into a high spatiotemporally-resolved NO2 product النص الكامل
2021
Shafran-Nathan, Rakefet | Etzion, Yael | Broday, David M.
Land use regression modeling is a common method for assessing exposure to ambient pollutants, yet it suffers from very coarse temporal resolution. Wireless distributed sensor networks (WDSN) is a promising technology that can provide extremely high spatiotemporal pollutant patterns but is known to suffer from several limitations that put into question its data reliability. This study examines the advantages of fusing data from these two methods and obtaining high spatiotemporally-resolved product that can be used for exposure assessment. We demonstrate this approach by estimating nitrogen dioxide (NO₂) concentrations at a sub-urban scale, with the study area limited by the deployment of the WDSN nodes. Specifically, hourly-resolved fused-data estimates were obtained by combining a stationary traffic-based land use regression (LUR) model with observations (15 min sampling frequency) made by an array of low-cost sensor nodes, with the sensors’ readings mapped over the whole study area. Data fusion was performed by merging the two independent information products using a fuzzy logic approach. The performance of the fused product was examined against reference hourly observations at four air quality monitoring (AQM) stations situated within the study area, with the AQM data not used for the development of any of the underlying information layers. The mean hourly RMSE between the fused data product and the AQM records was 9.3 ppb, smaller than the RMSE of the two base products independently (LUR: 14.87 ppb, WDSN: 10.45 ppb). The normalized Moran’s I of the fused product indicates that the data-fusion product reveals more realistic spatial patterns than those of the base products. The fused NO₂ concentration product shows considerable spatial variability relative to that evident by interpolation of both the WDSN records and the AQM stations data, with significant non-random patterns in 74% of the study period.
اظهر المزيد [+] اقل [-]HVAC filtration of particles and trace metals: Airborne measurements and the evaluation of quantitative filter forensics النص الكامل
2021
Mahdavi, Alireza | Dingle, Justin | Chan, Arthur W.H. | Siegel, Jeffrey A.
Filters installed in the heating, ventilation, and air-conditioning (HVAC) systems can serve as air-cleaning and sampling devices for indoor particles. The purpose of this article is to evaluate these dual roles. An occupied home with a central HVAC system equipped with a Minimum Efficiency Reporting Value (MERV, from ASHRAE Standard 52.2) 11 filter was monitored for six weeks. Weekly airborne gravimetric and real-time sampling was performed to measure the particle size distribution and the concentration of total suspended particles (TSP), PM₁₀, PM₂.₅, PM₁, and 12 trace metals. The weekly system runtimes were intentionally changed to provide a wide range of weekly filtration volumes. The quantitative filter forensics (QFF) concentrations of particulate matter (PM) and trace metals were calculated using the analysis of the dust collected on the HVAC filter, the filtration volume, and filter in-situ efficiency. The results indicated that filtration was not influential to remove PM and trace metals as the concentrations during the weeks with continuous HVAC operation were not consistently lower than those during the other weeks. This suggests the dominance of other particle and trace metal source and loss mechanisms weakens the influence of filtration in this home. The QFF evaluation results indicated that the concentration of TSP and over half of the tested trace metals (e.g., Pb, Cd, Ni, V, Sb, K, and Sr) could be estimated by QFF within a factor of two when compared to airborne sampling results. PM₁₀, PM₂.₅, and PM₁ concentrations were significantly underestimated by QFF potentially due to the limitations of size distribution analysis by a laser diffraction particle sizer (LDPS) for the detection of <1 μm particles. Overall, while QFF was promising for TSP and some trace metals, improvement in size distribution analysis could extend the application of QFF for airborne sampling.
اظهر المزيد [+] اقل [-]Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies النص الكامل
2021
Zhang, Huanhuan | Zhang, Xiaoan | Wang, Qiong | Xu, Yuanzhi | Feng, Yang | Yu, Zengli | Huang, Cunrui
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM₂.₅] and ≤10 μm [PM₁₀]) and gaseous pollutants (sulfur dioxide [SO₂], nitrogen dioxide [NO₂], carbon monoxide [CO] and ozone [O₃]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran’s Q test and I² statistic. Publication bias was assessed using funnel plots and Egger’s tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM₂.₅ and CO exposure (per 10 μg/m³ increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008–1.180) and 1.0009 (95% CI: 1.0001–1.0017), respectively. Entire pregnancy exposure to PM₂.₅ was also associated with stillbirth (OR: 1.103, 95% CI: 1.074–1.131). A 10 μg/m³ increment in O₃ in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001–1.055). Short-term exposure (on lag day 4) to O₃ was also associated with stillbirth (OR: 1.002, 95% CI: 1.001–1.004). PM₁₀, SO₂ and NO₂ exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
اظهر المزيد [+] اقل [-]Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster النص الكامل
2021
Wang, Yahong | Zhang, Hongying | Zhang, Ziyan | Sun, Boqun | Tang, Chao | Zhang, Lu | Jiang, Zhihao | Ding, Bo | Liao, Yanyan | Cai, Peng
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m², 1 W/m², and 10 W/m². The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
اظهر المزيد [+] اقل [-]Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation النص الكامل
2021
Lee, Kuan-Ting | Du, Jyun-Ting | Chen, Wei-Hsin | Ubando, Aristotle T. | Lee, Keat Teong
A green approach using hydrogen peroxide (H₂O₂) to intensify the fuel properties of spent coffee grounds (SCGs) through torrefaction is developed in this study to minimize environmental pollution. Meanwhile, a neural network (NN) is used to minimize bulk density at different combinations of operating conditions to show the accurate and reliable model of NN (R² = 0.9994). The biochar produced from SCGs torrefied at temperatures of 200–300 °C, duration of 30–60 min, and H₂O₂ concentrations of 0–100 wt% is examined. The results reveal that the higher heating value (HHV) of biochar increases with rising temperature, duration, or H₂O₂ concentration, whereas the bulk density has an opposite trend. The HHV, ignition temperature, and bulk density of biochar from torrefaction at 230 °C for 30 min with a 100 wt% H₂O₂ solution (230-100%-TSCG) are 27.00 MJ∙kg⁻¹, 292 °C, and 120 kg∙m⁻³, respectively. This HHV accounts for a 29% improvement compared to that of untorrefied SCG. The contact angle (126°), water activity (0.51 aw), and moisture content (7.69%) of the optimized biochar indicate that it has higher resistance against biodegradation, and thereby can be stored longer. Overall, H₂O₂ is a green treatment additive for SCGs solid fuel. This study has successfully produced biochar with greater HHV and low bulk density at low temperatures. The green additive development can effectively reduce environmental pollutants and upgrade wastes into resources, and achieve “3E”, namely, environmental (non-polluting green additives), energy (biofuel), and circular economy (waste upgrade). In addition, the produced biochar has great potential in the fields of bioadsorbents and soil amendments.
اظهر المزيد [+] اقل [-]Estimation of hazardous concentration of toluene in the terrestrial ecosystem through the species sensitivity distribution approach النص الكامل
2021
Chae, Yooeun | Kim, Lia | Lee, Jieun | Kim, Dokyung | Cui, Rongxue | An, Youn-Joo
Toluene is a highly flammable and commonly used industrial chemical with severe health consequences on humans upon exposure and ingestion. In this study, multispecies bioassays were conducted using a species sensitivity distribution approach to determine acute and chronic hazardous concentrations of toluene in soil. Acute and chronic toluene toxicity tests were conducted with seven soil species from four taxonomic groups. The results from the toxicity tests were used to estimate the acute and chronic HC₅ (hazardous concentration for 5 % of species) of toluene in the terrestrial environment at 58.9 (5.4–639.6) mg kg⁻¹ and 2.2 (0.2–19.8) mg kg⁻¹, respectively. To the best of our knowledge, this is the first study to estimate the hazardous concentration of toluene in soil by conducting a battery of bioassays. These values can be used as references for the environmental risk assessment of chemical accidents involving toluene and estimating its impact on soil to protect the terrestrial environment.
اظهر المزيد [+] اقل [-]