خيارات البحث
النتائج 1411 - 1420 من 4,936
Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos النص الكامل
2019
Pérez-Coyotl, I. | Galar-Martínez, M. | García-Medina, S. | Gómez-Oliván, L.M. | Gasca- Pérez, E. | Martínez-Galero, E. | Islas-Flores, H. | Pérez-Pastén, Borja R. | Barceló, D. | López de Alda, M. | Pérez-Solsona, S. | Serra-Roig, M.P. | Montemurro, N. | Peña-Herrera, J.M. | Sánchez-Aceves, L.M.
Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos النص الكامل
2019
Pérez-Coyotl, I. | Galar-Martínez, M. | García-Medina, S. | Gómez-Oliván, L.M. | Gasca- Pérez, E. | Martínez-Galero, E. | Islas-Flores, H. | Pérez-Pastén, Borja R. | Barceló, D. | López de Alda, M. | Pérez-Solsona, S. | Serra-Roig, M.P. | Montemurro, N. | Peña-Herrera, J.M. | Sánchez-Aceves, L.M.
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
اظهر المزيد [+] اقل [-]Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos النص الكامل
2019
Pérez-Coyotl, I. | Galar-Martínez, Marcela | García-Medina, Sandra | Gómez-Oliván, Leobardo Manuel | Gasca-Pérez, Eloy | Islas-Flores, Hariz | Pérez-Pastén-Borja, Ricardo | Barceló, Damià | López de Alda, Miren | Pérez Solsona, Sandra | Serra-Roig, M. Pau | Montemurro, Nicola | Peña-Herrera, Juan Manuel | Sánchez-Aceves, Livier Mireya | Barceló, Damià [0000-0002-8873-0491] | López De Alda, Miren [0000-0002-9347-2765] | Perez, Sandra [0000-0002-3179-3969] | Montemurro, Nicola [0000-0002-7496-203X] | Peña-Herrera, Juan Manuel [0000-0002-9677-6457] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos. Capsule: The water of the Madín dam contains a complex mixture of pollutants, including hydrocarbons, which produce oxidative stress and embryotoxicity on Cyprinus carpio. © 2019 Elsevier Ltd | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico, project #181541 and Cátedras CONACyT, #282), and the Secretaría de Investigación y Posgrado of the Instituto Politécnico Nacional (SIP-IPN, project #20160871 and 20180699). We give thanks to Biologist Gerardo Ontiveros at the Centro Carpícola Tiacaque for supplying the test specimens and giving advice on their care and maintenance. | Peer reviewed
اظهر المزيد [+] اقل [-]Acceleration of perchloroethylene dechlorination by extracellular secretions from Microbacterium in a mixed culture containing Desulfitobacterium النص الكامل
2019
Wan, Jixing | Chen, Chen | Chen, Jingwen | Miao, Qianyu | Liu, Yindong | Ye, Junxiang | Chen, Kezhen | Jin, Yiying | Tang, Xianjin | Shen, Chaofeng
The study was conducted to demonstrate the influence of extracellular secretions from Microbacterium on the reductive dechlorination of tetrachloroethene (PCE). A series of mixed cultures were established from a paddy soil sample. In the mixed cultures amended with extracellular secretions from Microbacterium, PCE was rapidly and completely converted into cis-1,2-dichloroethene (cis-DCE) and trans-1,2-dichloroethene (trans-DCE) within 40 days. The unamended mixed cultures showed weak signs of dechlorination after a pronounced lag phase, and trichloroethene (TCE) was accumulated as a major end product. This result means that amendment with extracellular secretions from Microbacterium shortened the lag phase, increased the dechlorination velocity and promoted the production of less-chlorinated chloroethene. The results were corroborated by defined subculture experiments, which proved that microorganisms from unamended mixed cultures could also be stimulated by extracellular secretions from Microbacterium. Desulfitobacterium was identified as the main dechlorinating population in all mixed cultures by direct PCR. Additionally, the 16S rRNA gene copies of Desulfitobacterium increased by one or two orders of magnitude with PCE dechlorination, which provided corroborative evidence for the identification result. The volatile fatty acids were monitored, and most interestingly, a close association between propionate oxidation and dechlorination was found, which has rarely been mentioned before. It was assumed that the oxidation of propionate provided hydrogen for dechlorination, while dechlorination facilitated the shift of the reaction toward propionate oxidation by reducing the partial pressure of hydrogen.
اظهر المزيد [+] اقل [-]Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus النص الكامل
2019
He, Erkai | Qiu, Hao | Huang, Xueyin | Van Gestel, Cornelis A.M. | Qiu, Rongliang
There is still no consensus over the specific effects of metal-based nanoparticles when compared with the conventional metal salts. Here, the accumulation and toxicity of ZnO-NPs and ZnCl2 in Enchytraeus crypticus over time (1–14 d) were investigated using a sand-solution exposure medium and applying a toxicokinetics and toxicodynamics approach. For both Zn forms, body Zn concentration in the organisms was dependent on both the exposure concentration and exposure time, with equilibrium being reached after 7–14 days of exposure. Generally, the uptake and elimination rate constants (Ku and Ke1) were smaller for ZnO-NPs (5.74–12.6 mg kg−1d−1 and 0.17–0.39 d−1) than for ZnCl2 (8.32–40.1 mg kg−1d−1 and 0.31–2.05 d−1), suggesting that ionic Zn was more accessible for E. crypticus than nanoparticulate Zn. Based on external exposure concentrations, LC50s for ZnO-NPs and ZnCl2 decreased with time from 123 to 67 Zn mg L−1 and from 86 to 62 Zn mg L−1, reaching an almost similar ultimate value within 14 d. LC50s based on body Zn concentrations were almost constant over time (except for 1 d) for both ZnO-NPs and ZnCl2, with overall LC50body of Zn being 1720 and 1306 mg kg−1 dry body weight, respectively. Body Zn concentration, which considers all available pathways, was a good predictor of dynamic toxicity of ZnCl2, but not for ZnO-NPs. This may be attributed to the specific internal distribution and detoxification mechanisms of ZnO-NPs. The particles from ZnO-NPs dominated the accumulation (>75%) and toxicity (∼100%). Our results suggest that dynamic aspects should be taken into account when assessing and comparing NPs and metals uptake and consequent patterns of toxicity.
اظهر المزيد [+] اقل [-]Spatial and temporal risk quotient based river assessment for water resources management النص الكامل
2019
Wan Mohtar, Wan Hanna Melini | Khairul Nizam Abdul Maulud, | Muhammad, Nur Shazwani | Sharil, Suraya | Yaseen, Zaher Mundher
Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH₃) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
اظهر المزيد [+] اقل [-]Exploring the characteristics and sources of carbonaceous aerosols in the agro-pastoral transitional zone of Northern China النص الكامل
2019
Hao, Yufang | Meng, Xiangpeng | Yu, Xuepu | Lei, Mingli | Li, Wenjun | Yang, Wenwen | Shi, Fangtian | Xie, Shaodong
Carbonaceous aerosols are linked to severe haze and health effects, while its origins remain still unclear over China. PM2.5 samples covering four seasons from Jan. 2016 to Jan. 2017 were collected at six sites in Chifeng, a representative agro-pastoral transitional zone of North China focusing on the characteristics and sources of organic carbon (OC) and elemental carbon (EC). The annual averages of OC, EC were 9.00 ± 7.24 μg m−3, 1.06 ± 0.79 μg m−3 with site Songshan in coal mining region exhibited significantly enhanced levels. The residential heating emissions, air stagnation, and secondary organic formation all contributed the higher OC, EC levels in winter. Meanwhile, the impacts from open biomass burning were most intensive in spring. The retroplumes via Lagrangian model highlighted a strong seasonality of regional sources which had more impacts on EC increases. The Positive Matrix Factorization (PMF) model resolved six primary sources, namely, coal combustion, biomass burning, industrial processes, oil combustion, fugitive dust, and fireworks. Coal combustion and biomass burning comprised large fractions of OC (30.57%, 30.40%) and EC (23.26%, 38.47%) across the sites, while contributions of industrial processes and oil combustion clearly increased in the sites near industrial sources as smelters. PMF and EC tracer method gave well correlated (r=0.65) estimates of Secondary OC (SOC). The proportion of coal combustion and SOC were more enhanced along with PM2.5 elevation compared to other sources, suggesting their importances during the pollution events.
اظهر المزيد [+] اقل [-]A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water النص الكامل
2019
Xu, Xiaohui | Zhang, Xiao | Carrillo, Genny | Zhong, Yan | Kan, Haidong | Zhang, Bangning
Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated.In this study, we assessed the carcinogenicity of 1,173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA).We linked the HF chemical data with the agent classification data from the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1,534 chemicals) to evaluate potential carcinogenicity of the chemicals.The Chemical Abstract Service Registry Numbers (CASRNs) for chemicals were used for data linkage. Among 1,173 chemicals, 1,039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals, and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic, and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.Conclusions Our evaluation suggests that exposure to some chemicals in HF fluids and wastewater may increase cancer risk, and the identified chemicals could be selected as the priority list for drinking water exposure assessment or cancer-related health studies.
اظهر المزيد [+] اقل [-]Urban population exposure to tropospheric ozone: A multi-country forecasting of SOMO35 using artificial neural networks النص الكامل
2019
Antanasijević, Davor | Pocajt, Viktor | Perić-Grujić, Aleksandra | Ristic, Mirjana
Urban population exposure to tropospheric ozone is a serious health concern in Europe countries. Although there are insufficient evidence to derive a level below which ozone has no effect on mortality WHO (World Health Organization) uses SOMO35 (sum of means over 35 ppb) in their health impact assessments. Is this paper, the artificial neural network (ANN) approach was used to forecast SOMO35 at the national level for a set of 24 European countries, mostly EU members. Available ozone precursors’ emissions, population and climate data for the period 2003–2013 were used as inputs. Trend analysis had been performed using the linear regression of SOMO35 over time, and it has demonstrated that majority of the studied countries have a decreasing trend of SOMO35 values.The created models have made majority of predictions (≈60%) with satisfactory accuracy (relative error <20%) on testing, while the best performing model had R² = 0.87 and overall relative error of 33.6%. The domain of applicability of the created models was analyzed using slope/mean ratio derivate from the trend analysis, which was successful in distinguishing countries with high from countries with low prediction errors. The overall relative error was reduced to <14%, after the pool of countries was reduced based on the abovementioned criterion.
اظهر المزيد [+] اقل [-]Persistent halogenated organic pollutants in follicular fluid of women undergoing in vitro fertilization from China: Occurrence, congener profiles, and possible sources النص الكامل
2019
Huang, Yumei | Yan, Muting | Nie, Huayue | Wang, Wenjing | Wang, Jun
Analysis of persistent halogenated organic pollutants (HOPs) in human follicular fluid is important given previous reports of their adverse effects on the reproductivity of women. In the present work, HOPs, including polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), were analyzed in 127 follicular fluid samples collected from patients who were undergoing in vitro fertilization in Central China. The concentrations of ∑₇BDEs (sum of BDE-28, -47, −99, −100, −153, −154, and −183) in follicular fluid ranged from not detected (n.d.) to 110 ng/g lipid weight (lw), with an average of 50 ± 24 ng/g lw. BDE-100 was suggested to be an indicator of BDE congeners in follicular fluid, with the highest concentrations and showing a significantly high correlation (p < 0.01) with ∑₇BDEs. Penta-BDE products were the principal source of PBDEs in follicular fluid samples. The concentrations of ∑₇CBs (CB-28, -52, −101, −118, −138, −153, and −180) in follicular fluids ranged from n.d. to 250 ng/g lw, with an average of 77 ± 69 ng/g lw. CB-28 and CB-52 were considered to be indicator CB congeners, with tri-CBs and tetra-CBs dominating in follicular fluid. No significant correlation was observed between patient age and PBDE or PCB concentrations in follicular fluid, indicating that age was not the controlling factor influencing the bioaccumulation of most HOPs in this study.
اظهر المزيد [+] اقل [-]Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area النص الكامل
2019
Zheng, Xiangbin | Huo, Xia | Zhang, Yu | Wang, Qihua | Zhang, Yuling | Xu, Xijin
Lead (Pb) and polycyclic aromatic hydrocarbon (PAH) exposure is positively associated with cardiovascular disease (CVD), and the possible potential mechanism may be caused by damage to the endothelium by modulation of inflammatory processes. No comprehensive research shows co-exposure of Pb and PAH on cardiovascular endothelial inflammation in electronic waste (e-waste) exposed populations. Given this, the aim of this study is to provide evidence for a relationship between Pb and PAH co-exposure and cardiovascular endothelial inflammation, in an e-waste-exposed population, to delineate the link between a potential mechanism for CVD and environmental exposure. We recruited 203 preschool children (3–7 years) were enrolled from Guiyu (e-waste-exposed group, n = 105) and Haojiang (reference group, n = 98). Blood Pb levels and urinary PAH metabolites were measured. Percentages of T cells, CD4⁺ T cells and CD8⁺ T cells, complete blood counts, endothelial inflammation biomarker (serum S100A8/A9), and other inflammatory biomarkers [serum interleukin (IL)-6, IL-12p70, gamma interferon-inducible protein 10 (IP-10)] levels were evaluated. Blood Pb, total urinary hydroxylated PAH (ΣOHPAH), total hydroxynaphthalene (ΣOHNap) and total hydroxyfluorene (ΣOHFlu) levels, S100A8/A9, IL-6, IL-12p70 and IP-10 concentrations, absolute counts of monocytes, neutrophils, and leukocytes, as well as CD4⁺ T cell percentages were significantly higher in exposed children. Elevated blood Pb, urinary 2-hydroxynaphthalene (2-OHNap) and ΣOHFlu levels were associated with higher levels of IL-6, IL-12p70, IP-10, CD4⁺ T cell percentages, neutrophil and monocyte counts. Mediator models indicated that neutrophils exert the significant mediation effect on the relationship between blood Pb levels and S100A8/A9. IL-6 exerts a significant mediation effect on the relationship between blood Pb levels and IP-10, as well as the relationship between urinary ΣOHFlu levels and IP-10. Our results indicate that children with elevated exposure levels of Pb and PAHs have exacerbated vascular endothelial inflammation, which may indicate future CVD risk in e-waste recycling areas.
اظهر المزيد [+] اقل [-]Linear and nonlinear partition of nonionic organic compounds into resin ADS-21 from water النص الكامل
2019
Zhou, Chenkai | Qi, Long | Lin, Daohui | Yang, Kun
The predominance of natural organic matter (NOM) in nonlinear sorption of nonionic organic compounds (NOCs) is a fundamental behavior that controlling the fate, transfer and bioavailability of NOCs in natural environment. There is a debate, i.e., whether the nonlinear sorption is captured by nonlinear partition mechanism or adsorption mechanism. The debate has been going on for decades because characteristics of nonlinear partition are still unknown due to the lack of an adsorbent that can partition NOCs nonlinearly. We find a resin ADS-21, with specific surface area undetectable (<0.5 m² g⁻¹) but high sorption capacity for NOCs (up to 1000 mg g⁻¹ for phenol as an example), is an ideal adsorbent for examining characteristics of nonlinear partitioning. This resin has nonlinear isotherms for phenols and anilines but linear isotherms for polycyclic aromatic hydrocarbons and nitrobenzenes. The observed positively linear relationship of sorption capacities of NOCs with NOCs solubility in water or octanol, could be one of the characteristics of nonlinear partition. Moreover, competitive sorption and no desorption hysteresis could be observed for the nonlinear partition. Hydrogen-bonding of phenols and anilines with ADS-21 is responsible for nonlinear partition, competitive sorption and isotherm nonlinearity. These evidences would be supportive for understanding nonlinear partition and the nonlinear sorption of NOCs by NOM.
اظهر المزيد [+] اقل [-]