خيارات البحث
النتائج 1411 - 1420 من 7,921
Exogenous application of Mn significantly increased Cd accumulation in the Cd/Zn hyperaccumulator Sedum alfredii
2021
Ge, Jun | Tian, Shengke | Yu, Haiyue | Zhao, Jianqi | Chen, Junwen | Pan, Lijia | Xie, Ruohan | Lu, Lingli
Sedum alfredii is a Cd/Zn hyperaccumulator native to China, which was collected from a mined area where Mn content in soil was extremely high, together with Zn and Cd content. We investigated the tolerance and accumulation ability of Mn and its possible association with Cd hyperaccumulation in this plant species by using MP-AES, SR-μ-XRF, and RT-PCR. The results showed that the hyperaccumulating ecotype (HE) S. alfredii exhibited high tolerance to Mn and accumulating around 10,000 and 12,000 mg kg⁻¹ Mn in roots and shoots, respectively, without exhibiting toxicity under 5000 mg kg⁻¹ Mn treatment for 4 weeks. Exposure to Cd significantly reduced plant uptake of Mn. In contrast, exogenous Mn application significantly improved root uptake and root-to-shoot translocation of Cd, resulting in the increased Cd accumulation in the shoots of HE S. alfredii. SR-μ-XRF analysis demonstrated that high Mn (20 μM) exposure resulted in higher intensities of Cd localized in both stem vascular bundles and cortex, as well as leaf mesophyll cells, than in those treated with low Mn levels (0.2 μM or 2.0 μM). RT-PCR analysis of several genes possibly involved in Mn/Cd transportation showed that expression of SaNramp3 in roots was significantly reduced under high Mn exposure. These results suggested a significant interaction between Cd and Mn in the HE S. alfredii plants, possibly through their competition for transporters and theoretically provided a strategy to improve the efficiency of Cd extraction from polluted soils by this plant species, after using appropriate nutrient management of Mn.
اظهر المزيد [+] اقل [-]Evaluating the effect of CFH-12® and Phoslock® on phosphorus dynamics during anoxia and resuspension in shallow eutrophic lakes
2021
Funes, A. | Álvarez-Manzaneda, I. | Arco, A del | de Vicente, J. | de Vicente, I.
Laboratory experiments with intact sediment cores from a hypertrophic very windy exposed shallow lake were conducted to assess the combined effect of anoxia and sediment resuspension on phosphorus (P) dynamics after adding different P adsorbents (CFH-12® and Phoslock®). In this study we hypothesize that the addition of geoengineering materials will increase P retention in the sediment even at the worst physic-chemical conditions such as anoxia and sediment resuspension. Both adsorbents significantly reduced the P release from the sediments after a 54 days-anoxic incubation period (CFH-12® by 85% and Phoslock® by 98%) and even after resuspension events (CFH-12® by 84% and Phoslock® by 88%), indicating that both adsorbents are suitable P inactivating agents for restoring shallow eutrophicated lakes under such circumstances. CFH-12® did not release dissolved Fe to the water column neither after the anoxic period nor after resuspension events compared to Control (no adsorbents addition). The La concentration was significantly higher in Phoslock® (3.5–5.7 μg L⁻¹) than in Control at all sampling days but it was not affected by resuspension. The high efficiency in P removal under anoxia and resuspension, the low risk of toxicity and the high maximum adsorption capacity makes CFH-12® a promising adsorbent for lake restoration. Nevertheless, further research about the influence of other factors (i.e. pH, alkalinity, interfering substances or strict anoxia) on the performance of CFH-12® is needed.
اظهر المزيد [+] اقل [-]Effect of non-optimum ambient temperature on cognitive function of elderly women in Germany
2021
Zhao, Qi | Wigmann, Claudia | Areal, Ashtyn Tracey | Altug, Hicran | Schikowski, Tamara
Non-optimum ambient temperature has been associated with a variety of health outcomes in the elderly population. However, few studies have examined its adverse effects on neurocognitive function. In this study, we explored the temperature-cognition association in elderly women. We investigated 777 elderly women from the German SALIA cohort during the 2007–2010 follow-up. Cognitive function was evaluated using the CERAD-Plus test battery. Modelled data on daily weather conditions were assigned to the residential addresses. The temperature-cognition association over lag 0–10 days was estimated using multivariable regression with distributed lag non-linear model. The daily mean temperature ranged between −6.7 and 26.0 °C during the study period for the 777 participants. We observed an inverse U-shaped association in elderly women, with the optimum temperature (15.3 °C) located at the 68th percentile of the temperature range. The average z-score of global cognitive function declined by −0.31 (95%CI: 0.73, 0.11) for extreme cold (the 2.5th percentile of temperature range) and −0.92 (95%CI: 1.50, −0.33) for extreme heat (the 97.5th percentile of temperature range), in comparison to the optimum temperature. Episodic memory was more sensitive to heat exposure, while semantic memory and executive function were the two cognitive domains sensitive to cold exposure. Individuals living in an urban area and those with a low educational level were particularly sensitive to extreme heat. In summary, non-optimum temperature was inversely associated with cognitive function in elderly women, with the effect size for heat exposure particularly substantial. The strength of association varied by cognitive domains and individual characteristics.
اظهر المزيد [+] اقل [-]A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples
2021
Martinez, Guillaume | Niu, Jianjun | Takser, Larissa | Bellenger, Jean-Phillipe | Zhu, Jiping
Halogenated flame retardants (HFRs) market is continuously evolving and have moved from the extensive use of polybrominated diphenyl ether (PBDE) to more recent introduced mixtures such as Firemaster 550, Firemaster 680, DP-25, DP-35, and DP-515. These substitutes are mainly composed of non-PBDEs HFRs such as 2-ethyl-hexyl tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE). Other HFRs commonly being monitored include Dechlorane Plus (DP), Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), Dechlorane 604 (Dec604), 5,6-dibromo-1,10, 11, 12,13,13-hexachloro- 11-tricyclo[8.2.1.02,9]tridecane (HCDBCO) and 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-2,3-dihydro-1H-indene (OBTMPI). This review aims at highlighting the advances in the past decade (2010–2020) on both the analytical procedures of HFRs in human bio-specimens using gas chromatography coupled with single quadrupole mass spectrometry and synthesizing the information on the levels of these HFRs in human samples. Human specimen included in this review are blood, milk, stool/meconium, hair and nail. The review summarizes the analytical methods, including extraction and clean-up techniques, used for measuring HFRs in biological samples, which are largely adopted from those for analysing PBDEs. In addition, new challenges in the analysis to include both PBDEs and a wide range of other HFRs are also discussed in this review. Review of the levels of HFRs in human samples shows that PBDEs are still the most predominant HFRs in many cases, followed by DP. However, emerging HFRs are also being detected in human despite of the fact that both their detection frequencies and levels are lower than PBDEs and DP. It is clearly demonstrated in this review that people working in the industry or living close to the industrial areas have higher HFR levels in their bodies.
اظهر المزيد [+] اقل [-]Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as sea turtles
2021
Barraza, Arthur D. | Finlayson, Kimberly A. | Leusch, Frederic D.L. | van de Merwe, Jason P.
Threatened or endangered reptiles, such as sea turtles, are generally understudied within the field of wildlife toxicology, with even fewer studies on how contaminants affect threatened species reproduction. This paper aimed to better inform threatened species conservation by systematically and quantitatively reviewing available research on the reproductive toxicology of all reptiles, threatened and non-threatened. This review found 178 studies that matched our search criteria. These papers were categorized into location conducted, taxa studied, species studied, effects found, and chemicals investigated. The most studied taxa were turtles (n = 87 studies, 49%), alligators/crocodiles (n = 54, 30%), and lizards (n = 37, 21%). Maternal transfer, sex steroid alterations, sex reversal, altered sexual development, developmental abnormalities, and egg contamination were the most common effects found across all reptile taxa, providing guidance for avenues of research into threatened species. Maternal transfer of contaminants was found across all taxa, and taking into account the foraging behavior of sea turtles, could help elucidate differences in maternal transfer seen at nesting beaches. Sex steroid alterations were a common effect found with contaminant exposure, indicating the potential to use sex steroids as biomarkers along with traditional biomarkers such as vitellogenin. Sex reversal through chemical exposure was commonly found among species that exhibit temperature dependent sex determination, indicating the potential for both environmental pollution and climate change to disrupt population dynamics of many reptile species, including sea turtles. Few studies used in vitro, DNA, or molecular methodologies, indicating the need for more research using high-throughput, non-invasive, and cost-effective tools for threatened species research. The prevalence of developmental abnormalities and altered sexual development and function indicates the need to further study how anthropogenic pollutants affect reproductive output in threatened reptiles.
اظهر المزيد [+] اقل [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
اظهر المزيد [+] اقل [-]Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil
2021
Zhan, Lu | Xia, Zhiwen | Hsu, Chen-Min | Xie, Bing
Antibiotics are commonly used in livestock and poultry breeding along with organic arsenic. Through long-term accumulation, they can enter into the surrounding soil through various pathways and contaminate the soil. In this paper, tetracycline antibiotics (TCs) and roxarsone (ROX) contaminated soil were used as the representatives of the two kinds of veterinary drugs contaminated soil, respectively, to study the thermal desorption behavior and arsenic stabilization process. Different parameters like heating temperatures, heat duration, stabilizer type and dosage were optimized for effective removal of TCs and ROX. Furthermore, TCs and ROX removal path and ROX stabilization mechanism were explored. Results of the study showed that over 98% of tetracycline antibiotics and roxarsone were effectively removed at 300 °C for 60 min. The heat treatment process of TCs contaminated soil was controlled by the first-order kinetics. Based on the detection of degradation products and thermogravimetric analysis, the possible thermal degradation path of TCs and ROX was proposed. Addition of FeSO₄.7H₂O (10% by weight) as stabilizer during the heat treatment process yielded 96.7% stabilization rate. Through the analysis of arsenic fractions, valence and the characterization of soil samples collected after the heat treatment, mechanism of arsenic stabilization in ROX was explored. The results show that thermal treatment combined with chemical stabilization technology can not only degrade TCs and ROX efficiently and completely, but also convert organic arsenic into inorganic state, which is conducive to better stabilization, and finally achieve effective and safe remediation of this kind of contaminated soil.
اظهر المزيد [+] اقل [-]Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells
2021
Ding, Yunfei | Zhang, Ruiqing | Li, Boqing | Du, Yunqiu | Li, Jing | Tong, Xiaohan | Wu, Yulong | Ji, Xiaofei | Zhang, Ying
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
اظهر المزيد [+] اقل [-]Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon
2021
Ferreira, Matheus da Silva | Fontes, Maurício Paulo Ferreira | Bellato, Carlos Roberto | Marques Neto, José de Oliveira | Lima, Hedinaldo Narciso | Fendorf, Scott
Rare earth elements (REEs) are generally defined as a homogenous group of elements with similar physical-chemical properties, encompassing Y and Sc and the lanthanides elements series. Natural REEs contents in soils depend on the parent material, the soil genesis processes and can be gradually added to the soil by anthropogenic activities. The REEs have been considered emerging pollutants in several countries, so the establishment of regulatory guidelines is necessary to avoid environmental contamination. In Brazil, REE soils data are restricted to some regions, and knowledge about them in the Amazon soils is scarce, although this biome covers more than 40% of the Brazilian territory. Thus, the objectives of this study were to determine the REE content in soils of two hydrographic basins (Solimões and Rio Negro) of the Amazon biome, establish their Quality Reference Values (QRV) and to investigate the existence of enrichment of REEs in urban soils. The ΣREE(Y + Sc) content of Solimões surface samples was 109.28 mg kg⁻¹ and the ΣREE(Y + Sc) content in the subsurface samples was 94.11 mg kg⁻¹. In soils of Rio Negro basin, the ΣREE(Y + Sc) was 43.95 15 mg kg⁻¹ surface samples and 38.40 mg kg⁻¹ in subsurface samples. The ΣREE(Y + Sc) in urban topsoils samples was 38.62 mg kg⁻¹. The REEs contents pattern in three studied areas are influenced in different amplitude by natural soil properties. The REEs content in urban topsoils were slightly higher than the Rio Negro pristine soils, but the ecological risk was low. QRVs recommend for Solimões soils ranged from 0.01 (Lu) to 145.6 mg kg⁻¹ (Ce) and for Rio Negro soils ranged from 0.05 (Lu) to 15.8 mg kg⁻¹ (Ce).
اظهر المزيد [+] اقل [-]Vaporization characteristics and aerosol optical properties of electronic cigarettes
2021
Wu, Jinlu | Yang, Muyun | Huang, Jiejie | Gao, Yihan | Li, Dian | Gao, Naiping
The aerosols generated from electronic cigarettes have a significant impact on the human respiratory system. Understanding the vaporization characteristics and aerosol optical properties of electronic cigarettes is important for assessing human exposure to aerosols. An experimental platform was designed and built to simulate the atomization process of electronic cigarette and detect the laser transmissivity of aerosols. The optical properties of single particles and polydispersed particle system for aerosols in the visible wavelength ranges of 400–780 nm were analyzed based on Mie theory. The results show that a higher heating power supplied by coil results in a larger average vaporization rate of e-liquid. Meanwhile, the steady-state transmissivity of the laser beam for aerosols reduces as the heating power increases. Under the same heating power and puffing topography, the total particulate mass (TPM) of aerosols generated by the e-liquid composed of higher vegetable glycerin (VG) content decreases. The scattering efficiency factor of aerosol particle of electronic cigarette increases with an increase in particle size. The volume scattering coefficients of a polydispersed particle system of aerosols decrease as the incident visible wavelengths increase. A higher VG content in e-liquid results in decreased TPM and particle number concentration of aerosols and increased the volume scattering coefficient in the visible wavelength range. It can explain an interesting phenomenon that a lower TPM and a better visual effect brought by the aerosols generated by the e-liquid with a higher VG content could be observed concurrently. The mass indexes (e.g., TPM, average vaporization rate, average mass concentration) and optical indexes (e.g., volume scattering coefficient, laser transmissivity) are suggested to be used for the comprehensive evaluation of relative amounts of aerosols. The results have potential significances for the objective and quantitative assessments of aerosols generated from electronic cigarettes.
اظهر المزيد [+] اقل [-]