خيارات البحث
النتائج 1421 - 1430 من 3,201
Removal of Fluoride from Contaminated Water Using Natural Calcium-Rich Attapulgite as a Low-Cost Adsorbent
2015
Yin, Hongbin | Kong, Ming | Tang, Wanying
In this study, natural calcium-rich attapulgite (NCAP) was used to develop a low-cost adsorbent for removing fluoride (F⁻) from contaminated water. The results showed that calcination can dramatically increase the F⁻ sorption capacity of NCAP and that the maximum F⁻ sorption capacity occurred at 700 °C. The sorption of F⁻ on NCAP heated at 700 °C (NCAP700) followed pseudo-second-order kinetics and was described by the Langmuir equilibrium model. The estimated F⁻ sorption capacity was approximately 140.0 mg/g at pH 8.0, which was comparable with the sorption capacities of some nanomaterials. The sorption of F⁻ on NCAP700 performed well at pH values of 7 to 10. In addition, anions such as NO₃ ⁻ and SO₄ ²⁻ did not affect fluoride removal, but PO₄ ³⁻ and HCO₃ ⁻ moderately influenced fluoride removal. A column study conducted using NCAP700 with a particle size of 0.2–0.5 mm indicated that the adsorbent could effectively purify nearly 200 bed volumes (BV) of water containing 3.0 mg F/l at pH 8.5. The removal of F⁻ from water mainly resulted from the formation of calcium fluoride precipitates and the complexation of fluoride with the –OH group of NCAP700, which was further confirmed by scanning electron microscopy–energy dispersive spectrometry (SEM-EDS) and X-ray photoelectron spectroscopy (XPS).
اظهر المزيد [+] اقل [-]Adsorption of Se (IV) and Se (VI) Using Copper-Impregnated Activated Carbon and Fly Ash-Extracted Char Carbon
2015
Jegadeesan, Gautham B. | Mondal, Kanchan | Lalvani, Shashi B.
Surface and groundwater are often contaminated with toxic anions such as arsenic and selenium. Because of their large surface areas, selenium adsorption on carbon sorbents is considered an attractive water treatment technique. In this present work, selenium sorption on copper-impregnated activated carbon and fly ash-extracted char carbon was evaluated. Unburned carbon was extracted from fly ash using froth floatation techniques, and the carbon sorbents were modified using copper ions. Adsorption experiments confirmed the strong influence of electrostatic forces on equilibrium uptakes of selenite (Se (IV)) and selenate (Se (VI)). Selenium sorption on virgin char carbon was maximum only at acidic pH, i.e., at pH < pHₚzc (pH at point of zero charge). Upon copper modification of the carbon surface, the pHₚzc shifted towards the alkaline region, and as a result, the positive charge density on the carbon surface increased. At pH > pHₚzc, a two- to fourfold increase in sorption coverage and threefold increase in selenium percent removal was observed. Se (IV) sorption was higher compared to Se (VI) sorption. The effect of selenium concentrations and competing anions was studied to evaluate adsorbent performance. The order of maximum surface coverage followed the order: modified char carbon > modified activated carbon > char carbon. The main mechanism of selenium (Se) sorption appeared to be (1) electrostatic attraction of the Se ions to the modified carbon surface at acidic to neutral pH; (2) complexation of Se ions with the copper ions/oxides on the carbon surface; and (3) co-precipitation with copper hydroxides at alkaline pH.
اظهر المزيد [+] اقل [-]Assessment of the Responsiveness to Different Stresses of the Microbial Community from Long-Term Hydrocarbon-Contaminated Soils
2015
Pessacq, Jorge | Medina, Rocio | Terada, Claudia | Bianchini, Flavia E. | Morelli, Irma S. | Del Panno, María T.
Soils exposed to long-term contamination with hydrocarbons may present extreme challenges to maintain the biological resilience to the stress. To elucidate the relationships between the initial event of contamination and the responsiveness to the stress, we investigated the extent of the microbial resilience of biological functions from two contaminated soils sampled from a petrochemical area (S1, underwent diffuse hydrocarbon contamination, and S2, from a land farming unit where an alkaline petrochemical sludge was treated) after the Cd, saline, and acid stresses. Both contaminated soils were characterized by low organic matter content compared with a pristine soil. Although similar Shannon diversity index and heterotrophic bacterial count were observed, different bacterial community structures (PCR-DGGE) and less enzymatic activities characterized the contaminated soils. Particularly, functional diversity determined by Biolog EcoPlates™ was not detected in S2 soil. Only the S1 soil showed resilience of the enzymatic activities and functional diversity, suggesting the presence of a well-adapted microbial community able to face with the stresses. The S2 was the most disturbed and less responsive soil. However, an increase in the functional diversity was evidenced after acidification, and it is possible to correlate this responsiveness with the sludge properties treated in the land farming unit. In addition, if the selected stress can reverse the soil condition provoked for the first disturbance, responsiveness could be expected.
اظهر المزيد [+] اقل [-]The Biogeochemistry of Metal-Contaminated Peatlands in Sudbury, Ontario, Canada
2015
Pennington, P. R. | Watmough, S.
Understanding the biogeochemistry of metal-contaminated peatlands is important for predicting the impact of mining and industrial activities on peatlands and downstream surface waters and for predicting recovery of previously impacted sites. The objective of this work was to characterize the factors controlling spatial and temporal variability in surface peat (0–15 cm) and pore water chemistry of 18 regionally representative peatlands in Sudbury, Ontario, Canada. The pollution gradient is clearly evident as Cu and Ni concentrations in surface peat are elevated close to the main Copper Cliff smelter. Surface peat also differs greatly in acidity (pH) and organic matter content among sites, and dissolved organic carbon (DOC) concentrations in pore water are positively correlated with peat carbon content. In addition, sites having surface peat that is more decomposed also have pore water DOC that is more humified. Pore water chemistry varies seasonally; samples taken in late summer and fall were characterized by higher SO₄, and lower pH and higher concentrations of base cations and metals such as Ni, Co, and Mn compared with those in late spring that had higher DOC, higher pH, and higher concentrations of metals such as Cu and Fe. Despite the large spatial and temporal variability in pore water chemistry, soil-solution partitioning (K d) of some metals (Ni, Co, and Mn) can be explained by pH alone. Modeling soil-solution partitioning for these metals and Cu, Al, and Fe is significantly improved with the addition of SO₄; dissolved organic matter quality and quantity and/or the δ¹⁸O signature of the pore water in regression models indicating several factors other than acidity has an influence on pore water chemistry.
اظهر المزيد [+] اقل [-]Differences in Benzene Patterns Among Traffic and Industrial Areas and a Prediction Model for Benzene Rates Based on NO x Values
2015
Paz, Shlomit | Golʹdshteĭn, Pavel | Kordova-Biezuner, Levana | Adler, Lea
Exposure to benzene has been associated with multiple severe impacts on health. This notwithstanding, at most monitoring stations, benzene is not monitored on a regular basis. Data were used from two different monitoring stations located on the eastern Mediterranean coast: (1) a traffic monitoring station in Tel Aviv located in an urban region with heavy traffic and (2) a general air quality monitoring station in Haifa Bay located in Israel’s main industrial region. At each station, hourly, daily, monthly, seasonal, and annual data of benzene, NO ₓ , mean temperature, relative humidity, inversion level, and temperature gradient were analyzed over 3 years: 2008, 2009, and 2010. A prediction model for benzene rates based on NO ₓ levels (which are monitored regularly) was developed to contribute to a better estimation of benzene. The severity of benzene pollution was found to be considerably higher at the traffic monitoring station than at the general air quality station, despite the location of the latter in an industrial area. Hourly, daily, monthly, seasonal, and annual patterns have been shown to coincide with anthropogenic activities (traffic), the day of the week, and atmospheric conditions. A strong correlation between NO ₓ and benzene allowed the development of a prediction model for benzene rates based on NO ₓ , the day of the week, and the month. The model succeeded in predicting the benzene values throughout the year. The prediction model suggested in this study might be useful for identifying potential risk of benzene in other urban environments.
اظهر المزيد [+] اقل [-]Development of a Turbidity Prediction Methodology for Runoff–Erosion Models
2015
Neupane, Sagar | Vogel, Jason R. | Storm, Daniel E. | Barfield, Bill J. | Mittelstet, Aaron R.
Surface water bodies can be impaired by turbidity and excessive sediment loading due to urban development, construction activities, and agricultural practices. Turbidity has been considered as a proxy for evaluating water quality, aquatic habitat, and aesthetic impairments in surface waters. The US Environment Protection Agency (USEPA) has listed turbidity and sediment as major pollutants for construction site effluent. Recently proposed USEPA regulations for construction site runoff led to increased interest in methods to predict turbidity in runoff based on parameters that are more commonly predicted in runoff–erosion models. In this study, a turbidity prediction methodology that can be easily incorporated into existing runoff–erosion models has been developed using fractions of sand, silt, and clay plus suspended sediment concentration of eight parent soils from locations in Oklahoma and South Carolina, USA.
اظهر المزيد [+] اقل [-]How the Dyes Are Degraded/Mineralized in a Photocatalytic System? The Possible Role of Auxochromes
2015
Aslam, M. | Ismail, Iqbal M. I. | Cantiracēkaran̲, Cī. | Qari, Huda A. | Hameed, A.
The capability of W⁶⁺-impregnated ZnO photocatalysts for sunlight mineralization of a variety of structurally different dyes has been investigated. Compared to bare ZnO, the W⁶⁺-loaded photocatalysts showed significantly higher activity for the decolorization as well as mineralization of dyes, and complete mineralization was noticed in a short span of 150 min. The results obtained by various analytical tools were correlated to estimate the mechanistic aspects of the decolorization/mineralization process and to identify the nature of the oxidizing species involved in the process. A strong dependence of the decolorization/mineralization process was observed on the nature and number of auxochromes attached to color-generating conjugated system. The rapid decolorization/mineralization of the dyes and release of corresponding anions with the decolorization of dyes suggested the involvement of charged rather than radical reactive oxygen species (ROS) in the oxidation process. Langmuir-Hinshelwood kinetic model was found to be best suited for evaluating the kinetics of mineralization process. The effectiveness of the catalysts for the decolorization/mineralization of a mixture of dyes was also examined. The suitability of the catalysts for successive use in sunlight exposure was also evaluated.
اظهر المزيد [+] اقل [-]Behavior of TOC and Color in the Presence of Iron-Modified Activated Carbon in Methyl Methacrylate Wastewater in Batch and Column Systems
2015
Almazán-Sánchez, Perla Tatiana | Castañeda-Juárez, Monserrat | Martínez-Miranda, Verónica | Solache-Ríos, Marcos José | Lugo-Lugo, Violeta | Linares-Hernández, Ivonne
Natural (AC-N) and electrochemical iron-modified activated carbon (AC-Fe-2.5A) were applied to treat wastewater with organic by-products generated by the manufacture of acrylic resins from methyl methacrylate (MMA) using batch and column systems. MMA wastewater has an extremely complex composition with a chemical oxygen demand concentration of 651.25 g O₂/L, total organic carbon (TOC) concentration of 227.86 g/L, NH₄⁺concentration of 62.74 g/L, and 352,500 PtCo units. Wastewater was distilled to decrease the ammonium concentration with a removal efficiency of ammonium of 52 %. Then, Fenton oxidation was applied in order to promote the partial oxidation of organic matter; the molar dosage of Fe²⁺/H₂O₂was 0.018/5.700 at pH 5.3. After distillation and oxidation processes, batch experiments using natural and iron-modified activated carbon were carried out in order to determinate the adsorption equilibrium time and capacities. The global removal percentages of TOC by oxidation–adsorption treatment were the highest at pH 2, 21.09 and 29.46 % for AC-N and AC-Fe-2.5A, respectively, and for color were most efficient at pH 4, 80.62 and 72.55 % for AC-N and AC-Fe-2.5A, respectively. The results showed that AC-Fe-2.5A was more efficient than AC-N for the removal of TOC. The electrochemical modification improves the adsorption capacities and properties of activated carbon.
اظهر المزيد [+] اقل [-]Use of Manganese/Silicon Tailing Waste for Coking Wastewater Treatment: Evaluation of Phenol and Phenylamine Removal Efficiencies
2015
Liu, Hongbo | Gao, Saisai | Zhu, Mengling | Zhen, Biao | Pan, Ding
Industrial production of manganese/silicon ore has generated a large number of tailing wastes which are difficult to dispose. A new method treating coking wastewater was proposed using the manganese/silicon tailing waste and demonstrated with good performances: the chemical oxygen demand (COD) removal rate was around 60 % without pH and temperature adjustment, with a reasonable reaction time of 2.5 h and tailing dosage of 0.2 g/L; while phenylamine was eliminated with a removal rate as high as 99 and 61.6 % for synthetic and real coking wastewater, respectively. Experimental results indicated that the removal of organic pollutants was mainly realized through chemical adsorption and/or oxidation by oxide components inside the tailing, rather than by physical adsorption. Operational parameters such as tailing dosage, reaction time, and temperature were optimized. Acid conditions were found to be favorable to remove the selected model organic pollutants, i.e., volatile phenols and phenylamine. Fortunately, the optimistic wastewater pH for COD removal was found to be around 7.0, right within the range of influent pH for real coking wastewater. The new method can treat coking wastewater and reuse mining tailing wastes simultaneously.
اظهر المزيد [+] اقل [-]Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metal Occurrence in Bed Sediments of a Temporary River
2015
Tzoraki, O. | Karaouzas, I. | Patrolecco, L. | Skoulikidis, N. | Nikolaidis, N. P.
The directive 2008/105/EC suggests the use of sediment or biota matrix for long-term monitoring of specific priority pollutants that tend to accumulate. But, the intermittent nature of flow in the majority of the Mediterranean rivers results in large variability of biological communities and especially fish, making advantageous the examination of pollution trend in sediment matrix and not in living organisms (biota). In this study, sediment environmental quality standards (EQSs) and sediment quality indicators (SQIs) were used to assess pollution by heavy metals (cadmium, nickel, lead, mercury, arsenic, chromium, copper, and zinc) and polycyclic aromatic hydrocarbons (PAHs) in Evrotas River, South Greece, monitored seasonally for 2 years (2009–2010) in five sampling sites. The results showed that, based on SQIs (geoaccumulation index (Igeo), enrichment factor (EF), and modified degree of contamination (mCd)), sediments of the Evrotas River can be classified as “low polluted,” with some exceptions of “extreme pollution.” EQS assessment revealed heavy metal pollution ranging from “low” to “medium high.” Furthermore, based on the Hakanson’s ecological risk index (RI) method, heavy metal potential risk was classified from “low” to “extreme.” Cadmium showed the highest RI values, while mercury reached “moderate” pollution level. The average ΣPAH concentration (24.4 ng g⁻¹) was lower than both the reported EQSs and the values found in literature for unpolluted or moderately polluted river sediments. Increased heavy metal and PAH concentrations were found in sites where mixing of freshwater with reclaimed water occurred. EQSs are suggested to be supplemented with the RI or EF index that consider the natural background to assist a first ecorisk assessment and should be foreseen by 2008/105/EC directive. Sediments can be considered as a valuable matrix in assessing the spatial and temporal trends of several contaminants and should be included in the monitoring program of temporary river management plans. Special attention should be given when defining reference sites and the sampling period. Decreasing flow period at the beginning of the spring prevailed in order to diminish any disturbance by flash flood events.
اظهر المزيد [+] اقل [-]