خيارات البحث
النتائج 1421 - 1430 من 3,208
Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium النص الكامل
2015
Masoner, Jason R. | Cozzarelli, Isabelle M.
Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m²/year and expanded by 878 %, from an area of 20,800 m²in 1986 to 203,400 m²in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10⁻⁵to 7.5 × 10⁻⁴ m/s, with a median of 2.0 × 10⁻⁴ m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl⁻concentrations during dry periods and decreasing Cl⁻concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl⁻concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl⁻concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.
اظهر المزيد [+] اقل [-]Gelatin-Grafted Granular Composite Hydrogel for Selective Removal of Malachite Green النص الكامل
2015
Zheng, Yian | Zhu, Yongfeng | Wang, Feng | Wang, Aiqin
Featured with biodegradability and biocompatibility properties, gelatin (GE) was selected as the backbone to graft poly(acrylic acid) (PAA) to fabricate a granular hydrogel at room temperature in air. Using attapulgite (APT) as an inorganic component, the resulting GE-g-PAA/APT hydrogel was characterized by means of Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and zeta potential analysis and then used as the adsorbent to be applied in a mixed dye solution containing malachite green and orange G. The addition of APT can significantly reduce the swelling degree during the adsorption process, though its influences on the adsorption capacity are not so expectable. The as-prepared hydrogel shows a wide pH-independent adsorption from 3.0 to 10.0, with the maximum adsorption capacity of 1370 mg/g for GE-g-PAA and 1190 mg/g for GE-g-PAA/APT (5 wt%). More importantly, the as-prepared hydrogel shows high adsorption selectivity for cationic dyes and the dye-loaded hydrogel can be easily regenerated and recovered for successive adsorption cycles. Graphical Abstract Gelatin-based granular hydrogel for selective removal of MG in a mixed dyes containing MG and OG-G.
اظهر المزيد [+] اقل [-]Atmospheric Phosphorus and Nitrogen Originating in China: Forest Deposition and Infiltration of Stream Water in Japan النص الكامل
2015
Tabayashi, Yu | Kamiya, Hiroshi | Godo, Toshiyuki | Ohshiro, Hitoshi | Yamamuro, Masumi
We analysed nutrients and basic ions (Na, Cl, K, Mg, Si, Ca, and SO₄) for a period of 1 year, including every precipitation event, and sampled stream water every 2 weeks from a forest catchment in Shimane Prefecture, Japan. Backward-trajectory analysis revealed that some air masses originated within Japan, but did not affect the precipitation chemistry. Air masses originating from northern China were positively correlated with nutrients and all basic ions. Concentrations of ammonium and dissolved organic nitrogen were much lower in stream water than in precipitation, while those of nitrate and particulate nitrogen were similar in stream water and precipitation. Unlike nitrogen, the dissolved phosphorus concentration was much higher in stream water than in precipitation. Both phosphate and dissolved organic phosphorus (DOP) levels were higher in stream water than in precipitation. Particulate phosphorus (PP) concentrations were very similar in precipitation and stream water. PP showed stronger correlations than potassium with suspended solids (SS) and flow rate, while phosphate and DOP were more strongly correlated with potassium than with SS or flow rate. Stream silica concentrations were not correlated with phosphate but did exhibit a significant negative correlation with DOP. Neither phosphate nor DOP was correlated with calcium. These results suggest that phosphorus is not leaching with silica or calcium as a paired cation, but rather with potassium in this area. Lower nitrogen concentrations in stream water than in precipitation can be attributed to an enhanced uptake of nitrogen by forest soils owing to the increased atmospheric deposition of phosphorus.
اظهر المزيد [+] اقل [-]A Comprehensive Evaluation of Parameters Affecting Treating High-Strength Compost Leachate in Anaerobic Baffled Reactor Followed by Electrocoagulation-Flotation Process النص الكامل
2015
Elyasi, Sh | Amani, T. | Dastyar, W.
In this study, high-load compost leachate was successfully treated in a hybrid anaerobic baffled reactor (ABR)/electrocoagulation-flotation (ECF) system. The interaction effects of operational factors in ABR, i.e., influent chemical oxygen demand (COD), hydraulic retention time (HRT), and COD/nitrogen (N) ratio on the efficiency of COD removal and biogas production rate (BPR) were analyzed and correlated by response surface methodology (RSM). The optimum conditions of ABR were found at COD = 8250 mg/L, HRT = 46 h, COD/N ratio = 70, where COD removal and BPR reached 84 % and 76 mL/mg h, respectively. COD/N ratio and HRT were found to be the most effective parameters, respectively, on COD removal and BPR. The organic loading rate (OLR) values varied from 0.45 to 5.66 kg/m³ day. The data presented indicate that the ECF reactor successfully satisfies the discharge criteria for most of the experimental domain. The outcomes have exposed that sequential ABR/ECF reactors are a competent system in treating low- and high-strength compost leachate.
اظهر المزيد [+] اقل [-]Effects of Different Fertilizer and Irrigation Water Types, and Dissolved Organic Matter on Soil C and N Mineralization in Crop Rotation Farmland النص الكامل
2015
Shang, Fangze | Ren, Shumei | Yang, Peiling | Li, Changsheng | Ma, Ning
Inorganic N fertilizer and irrigation water types on the C and N dynamics are poorly understood. This work aimed to evaluate the effect of different N fertilizer and irrigation water types on soil C and N mineralization. The farmland experiment was conducted with three types of N fertilizer (urea, ammonium sulfate, and slow-release urea) and drip irrigation with two types of water (groundwater and reclaimed water) for a summer maize-winter wheat crop rotation. Soil samples were collected from the experimental farmland for incubation experiments. The results showed that the average cumulative mineralization of soil C (incubation 20 days) and N (incubation 14 weeks) in different treatments ranged from 73.50 to 91.37 mg kg⁻¹ and 52.65 to 64.04 mg kg⁻¹, respectively. N fertilization significantly increased dissolved organic carbon (DOC), dissolved organic nitrogen (DON), soil organic carbon (SOC), and soil organic nitrogen (SON) contents in the soils, but N fertilizer and irrigation water types had no significant influence on them. Correspondingly, N fertilization significantly enhanced the mineralization of C by 14.14–21.22 % and N by 15.81–22.16 % in soils but no significant difference among different N fertilizer types. Compared with groundwater, reclaimed water irrigation enhanced the mineralization of C by 3.33 % and N by 1.01 %, but the difference was not statistically significant. The cumulative mineralization of C and N in soils after DOM removal average significantly decreased 9.83 and 14.83 %, respectively, which indicates that DOM plays an important role in soil C and N mineralization. Our results indicate that inorganic N fertilization promotes soil C and N mineralization, which may inevitably aggravate global warning. Reclaimed water irrigation had similar influence on soil C and N mineralization as groundwater irrigation; thus, we recommend irrigation with reclaimed water in water shortage areas.
اظهر المزيد [+] اقل [-]Enhanced Phytoextraction of Heavy Metals from Contaminated Soil by Plant Co-cropping Associated with PGPR النص الكامل
2015
Liu, Zhi-feng | Ge, Hong-guang | Li, Chen | Zhao, Zuo-ping | Song, Feng-min | Hu, Shi-bin
In this study, 1-year greenhouse pot experiments were conducted to investigate the effect of Phyllobacterium myrsinacearum strain RC6b on the growth and phytoextraction efficiency of heavy metals by a Zn/Cd hyperaccumulator (Sedum alfredii) and alfalfa (Medicago sativa L.) in a co-cropping system. The treated soil sample was collected from a land reclamation site of Pb/Zn mine tailings in Hanzhong City, Shaanxi Province, China. Results showed that, with the inoculation of RC6b, shoot biomass yields of plants were significantly increased by 15.9–20.2 % and 17.2–19.9 % for alfalfa and S. alfredii, respectively, compared to the non-inoculated plants. Biomass yield of alfalfa was higher than that of S. alfredii. RC6b inoculation increased metal concentrations by 18.6–31.2 % (Pb), 23.8–37.5 % (Cd), and 26.4–38.3 % (Zn) in S. alfredii shoots, and by 13.8–24.7 % (Pb), 15.8–26.6 % (Cd), and 24.8–35.6 % (Zn) in alfalfa shoots, respectively. After six consecutive harvests of shoots, RC6b inoculation increased the phytoextraction efficiencies of Pb, Cd, and Zn by shoots of the co-planting system by 16.9, 46.3, and 60.9 %, respectively. Nevertheless, phytoextraction of Cu was not improved by RC6b inoculation. In the co-planting/inoculation system, the percentage removals of metals from soil by the plant shoots were 6.09, 30.97, 11.10, and 1.68 % for Pb, Cd, Zn, and Cu, respectively, after six harvests of shoots. Inoculation with RC6b significantly increased the soil microbial activity and the carbon utilization ability of the soil microbial community.
اظهر المزيد [+] اقل [-]The Implications of Fe2O 3 and TiO 2 Nanoparticles on the Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of Humic Acid النص الكامل
2015
Salih, Hafiz H. | Sorial, George A. | Patterson, Craig L. | Speth, Thomas F.
The impact of Fe₂O₃and TiO₂nanoparticles (NPs) on the removal of trichloroethylene (TCE) in a granular activated carbon (GAC)-fixed bed adsorber was investigated in the presence of humic acid (HA). The surface charges of GAC and NPs were obtained in the presence and absence of HA with the NPs behaving similarly. Isotherm and column studies were conducted in the presence and absence of the NPs and HA. NPs had no effect on TCE adsorption during isotherm studies. However, in the column studies conducted with organic-free water, the presence of NPs resulted in a reduction in TCE capacity most likely due to pore blockage by aggregating NPs. This effect was completely mitigated in the presence of HAs that prevented an association between the GAC and the NPs, and between NPs. The presence of HA provided a high negative charge on the GAC and on the nanoparticles resulting in repulsive forces between the GAC and the NPs, and between NPs, thereby preventing pore blockage. Both Fe₂O₃and TiO₂NPs demonstrated that charge characteristics are more important than chemical characteristics. Pore-size distribution of the fresh and the spent GAC confirmed the adsorption data but points to some HA and NP interaction with the carbon.
اظهر المزيد [+] اقل [-]EDTA Chelating Process for Lead Removal: Evaluation of Approaches by Means of a Reactive Transport Model النص الكامل
2015
Martorelli, Elisa | Antonucci, Angela | Luciano, Antonella | Rossi, Elisabetta | Raboni, Massimo | Mancini, Giuseppe | Viotti, Paolo
A 1D reactive model is developed to simulate the EDTA chelating process in a lead (Pb)-contaminated saturated soil. The model is implemented using a multistep numerical approach in order to avoid numerical diffusion assuring at the same time the algorithm stability. The model takes into account first-order reactions where the lead species are splitted into three fractions: C₁(easily mobilized lead), C₂(lead associated with iron and manganese oxides), and C₃(lead bound to organic matter and in the residual fraction). Two different mobilization kinetics (“slow” and “fast”) are considered for each fraction. The model was therefore calibrated and validated using laboratory experimental data. A sequential extraction procedure was conducted to evaluate the lead mobilization due to the EDTA flushing through the column and to take into account the different soil fraction at which the metal is bound. Several remediation scenarios are used to show the suitability of the model to provide information and knowledge of the best EDTA feed and flux conditions for the lead extraction from soil. The model can therefore be considered as a tool to know in advance the performances of a remediation treatment and to optimize the extraction process minimizing the chelating agent costs and its effects on the soil.
اظهر المزيد [+] اقل [-]Toxic Effects of Aluminum Oxide (Al2O3) Nanoparticles on Root Growth and Development in Triticum aestivum النص الكامل
2015
Yanık, Fatma | Vardar, Filiz
The development of nanotechnology has increased the amount of nanoparticles in the environment inducing pollution. In view of increasing amounts, their toxicity assessment becomes important. Aluminum oxide nanoparticles (Al₂O₃ NPs) have a wide range of applications in industry. The present study aims to reveal the time-dependent (24, 48, 72, 96 h) and dose-dependent (0, 5, 25, 50 mg/ml) effects of 13-nm-sized Al₂O₃ NPs on an agronomic plant wheat (Triticum aestivum L.) roots correlating with the appearance of various cellular stress responses. Al₂O₃ NPs reduced the root elongation by 40.2 % in 5 mg/ml, 50.6 % in 25 mg/ml, and 54.5 % in 50 mg/ml after 96 h. Histochemical analysis revealed lignin accumulation, callose deposition, and cellular damage in root cortex cells correlating the root elongation inhibition. Although the nanoparticle application decreased the total protein content with respect to control after 96 h, the peroxidase activity increased significantly which is considered to be one of the oxidative stress factors. Moreover, agarose gel results revealed that Al₂O₃ NPs induced DNA fragmentation being one of the important markers of programmed cell death. In conclusion, direct exposure to Al₂O₃ NPs leads to phytotoxicity significantly in wheat roots culminating in morphological, cellular, and molecular alterations.
اظهر المزيد [+] اقل [-]Characterisation of Road Dust Organic Matter as a Function of Particle Size: A PARAFAC Approach النص الكامل
2015
Aryal, Rupak | Lee, Byeong-Kyu | Beecham, Simon | Kandasamy, Jaya | Aryal, Nanda | Parajuli, Keshab
Road dust organic matter plays a vital role in mobilization of contaminants. This study investigated and characterized organic matter (OM) presents in road dust particles of various sizes. Road dust samples were collected from an industrialized city of Ulsan, Republic of Korea and fractionated into four groups: <75, 75–180, 180–850, and 850–2000 μm. OM extracted from the four fractions was characterized by excitation-emission matrix fluorescence and analyzed by parallel factor analysis (PARAFAC). The PARAFAC identified four major fluorophore components (C1–C4). These components were related to microbial humic-like, anthropogenic organic, fulvic-like, and low molecular weight OM contributed by anthropogenic activity, respectively. There were subtle changes in specific OM composition with change in particle size. The finest fraction contained more microbial humic-like substances whereas the coarse fraction was enriched with fulvic acid. The OM in two fractions (75–180 and 180–800 μm) showed dual characteristics. Our findings demonstrated that PARAFAC approach can assist to assess the accumulation of pollutants in road dust.
اظهر المزيد [+] اقل [-]