خيارات البحث
النتائج 1421 - 1430 من 7,997
Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation النص الكامل
2021
Lee, Kuan-Ting | Du, Jyun-Ting | Chen, Wei-Hsin | Ubando, Aristotle T. | Lee, Keat Teong
A green approach using hydrogen peroxide (H₂O₂) to intensify the fuel properties of spent coffee grounds (SCGs) through torrefaction is developed in this study to minimize environmental pollution. Meanwhile, a neural network (NN) is used to minimize bulk density at different combinations of operating conditions to show the accurate and reliable model of NN (R² = 0.9994). The biochar produced from SCGs torrefied at temperatures of 200–300 °C, duration of 30–60 min, and H₂O₂ concentrations of 0–100 wt% is examined. The results reveal that the higher heating value (HHV) of biochar increases with rising temperature, duration, or H₂O₂ concentration, whereas the bulk density has an opposite trend. The HHV, ignition temperature, and bulk density of biochar from torrefaction at 230 °C for 30 min with a 100 wt% H₂O₂ solution (230-100%-TSCG) are 27.00 MJ∙kg⁻¹, 292 °C, and 120 kg∙m⁻³, respectively. This HHV accounts for a 29% improvement compared to that of untorrefied SCG. The contact angle (126°), water activity (0.51 aw), and moisture content (7.69%) of the optimized biochar indicate that it has higher resistance against biodegradation, and thereby can be stored longer. Overall, H₂O₂ is a green treatment additive for SCGs solid fuel. This study has successfully produced biochar with greater HHV and low bulk density at low temperatures. The green additive development can effectively reduce environmental pollutants and upgrade wastes into resources, and achieve “3E”, namely, environmental (non-polluting green additives), energy (biofuel), and circular economy (waste upgrade). In addition, the produced biochar has great potential in the fields of bioadsorbents and soil amendments.
اظهر المزيد [+] اقل [-]Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities النص الكامل
2021
Gallego, Sara | Nos, David | Montemurro, Nicola | Sanchez-Hernandez, Juan C. | Pérez, Sandra | Solé, Montserrat | Martin-Laurent, Fabrice
Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities النص الكامل
2021
Gallego, Sara | Nos, David | Montemurro, Nicola | Sanchez-Hernandez, Juan C. | Pérez, Sandra | Solé, Montserrat | Martin-Laurent, Fabrice
The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, β-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds.
اظهر المزيد [+] اقل [-]Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities النص الكامل
2021
Gallego, Sara | Nos, David | Montemurro, Nicola | Sanchez-Hernandez, Juan | Pérez, Sandra | Solé, Montserrat | Martin-Laurent, Fabrice | Agroécologie [Dijon] ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institute of Environmental Assessment and Water Research (IDAEA) ; Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | Inst Marine Sci ICM CSIC, Renewable Marine Resources Dept, Barcelona, Spain. | Univ Castilla La Mancha, Inst Environm Sci ICAM, Lab Ecotoxicol, Toledo 45071, Spain
International audience | The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, beta-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds. (C) 2021 Elsevier Ltd. All rights reserved.
اظهر المزيد [+] اقل [-]Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities النص الكامل
2021
Gallego, Sara | Nos, David | Montemurro, Nicola | Sánchez-Hernández, Juan C. | Pérez, Sandra | Solé, Montserrat | Martin-Laurent, Fabrice | Ministerio de Ciencia e Innovación (España) | Agencia Estatal de Investigación (España) | Montemurro, Nicola [0000-0002-7496-203X]
The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, β-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds. | This study was financially supported by the EU through the WaterJPI-2015 AWARE project (PCIN-2017-067), and by the Spanish Ministry of Science and Innovation (Project CEX2018-000794-S). The authors thank the Water Challenges for a Changing World Joint Programming Initiative. They also thank SCIEX for loaning the instrument LC/HRMS QTOF X500R and Bekolut GmbH & Co. KG for contributing to QuEChERS kit extraction. | With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI). | Peer reviewed
اظهر المزيد [+] اقل [-]Stochastic optimisation of organic waste-to-resource value chain النص الكامل
2021
Robles, Ivan | Durkin, Alex | Guo, Miao
Organic fraction municipal solid waste (OFMSW) has a high potential for energy and value-added product recovery due to its carbon- and nutrient-rich composition; however, traditional value chains have treated OFMSW as an undesired by-product. This study focuses on value chain optimisation to assist the transition to resource recovery value chains. To achieve this, this work combined two stage stochastic mathematical optimisation with geographical spatial analysis and time series waste generation analysis. Existing infrastructure in England, including anaerobic digestion plants and road transportation networks, were included in the model. To account for uncertainty in waste generation, multiple scenarios and their associated probabilities were developed based on environmental variables. The optimisation problem was solved to further advance the understanding of economically optimal waste-to-resource value chains under waste generation variability. The pertinent decision variables included sizing, technology selection, waste flows and location of thermochemical treatment sites. The model highlights the potential reduction in system profitability as a result of different operating constraints, such as minimum plant operating capacity factors and landfill taxation. The latter was shown to have the largest impact on profitability as overconservative systems designs were implemented to hedge against the waste variability. Such computer-aided models offer opportunities to overcome the challenges posed by waste generation variability and waste to resource value chain transformation.
اظهر المزيد [+] اقل [-]A temporal record of microplastic pollution in Mediterranean seagrass soils النص الكامل
2021
Dahl, Martin | Bergman, Sanne | Björk, Mats | Diaz-Almela, Elena | Granberg, Maria | Gullström, Martin | Leiva-Dueñas, Carmen | Magnusson, Kerstin | Marco-Méndez, Candela | Piñeiro-Juncal, Nerea | Mateo Pérez, Miguel Ángel
Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in ²¹⁰Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg⁻¹), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg⁻¹) and Santa Maria (68–362 kg⁻¹). The highest accumulation rate was seen in the Roquetas site (8832 MPP m⁻² yr⁻¹). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.
اظهر المزيد [+] اقل [-]Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets النص الكامل
2021
Wan, Hin Ting | Cheung, Lok Yi | Chan, Ting Fung | Li, Marco | Lai, Keng Po | Wong, Chris Kong Chu
Considerable human data have shown that the exposure to perfluorooctane sulfonate (PFOS) correlates to the risk of metabolic diseases, however the underlying effects are not clearly elucidated. In this study, we investigated the impacts of PFOS treatment, using in-vivo, ex-vivo and in-vitro approaches, on pancreatic β-cell functions. Mice were oral-gavage with 1 and 5 μg PFOS/g body weight/day for 21 days. The animals showed a significant increase in liver triglycerides, accompanied by a reduction of triglycerides in blood sera and glycogen in livers and muscles. Histological examination of pancreases showed no noticeable changes in the size and number of islets from the control and treatment groups. Immunohistochemistry showed a reduction of staining intensities of insulin and the transcriptional factors (Pdx-1, islet-1) in islets of pancreatic sections from PFOS-treated groups, but no changes in the intensity of Glut2 and glucagon were noted. Transcriptomic study of isolated pancreatic islets treated ex vivo with 1 μM and 10 μM PFOS for 24 h, underlined perturbations of the insulin signaling pathways. Western blot analysis of ex-vivo PFOS-treated islets revealed a significant reduction in the expression levels of the insulin receptor, the IGF1 receptor-β, Pdk1-Akt-mTOR pathways, and Pdx-1. Using the mouse β-cells (Min-6) treated with 1 μM and 10 μM PFOS for 24 h, Western blot analysis consistently showed the PFOS-treatment inhibited Akt-pathway and reduced cellular insulin contents. Moreover, functional studies revealed the inhibitory effects of PFOS on glucose-stimulated insulin-secretion (GSIS) and the rate of ATP production. Our data support the perturbing effects of PFOS on animal metabolism and demonstrate the underlying molecular targets to impair β-cell functions.
اظهر المزيد [+] اقل [-]A review on the valorisation of food waste as a nutrient source and soil amendment النص الكامل
2021
O’Connor, James | Hoang, Son A. | Bradney, Lauren | Dutta, Shanta | Xiong, Xinni | Tsang, Daniel C.W. | Ramadass, Kavitha | Vinu, Ajayan | Kirkham, M.B. | Bolan, Nanthi S.
Valorisation of food waste offers an economical and environmental opportunity, which can reduce the problems of its conventional disposal. Food waste is commonly disposed of in landfills or incinerated, causing many environmental, social, and economic issues. Large amounts of food waste are produced in the food supply chain of agriculture: production, post-harvest, distribution (transport), processing, and consumption. Food waste can be valorised into a range of products, including biofertilisers, bioplastics, biofuels, chemicals, and nutraceuticals. Conversion of food waste into these products can reduce the demand of fossil-derived products, which have historically contributed to large amounts of pollution. The variety of food chain suppliers offers a wide range of feedstocks that can be physically, chemically, or biologically altered to form an array of biofertilisers and soil amendments. Composting and anaerobic digestion are the main large-scale conversion methods used today to valorise food waste products to biofertilisers and soil amendments. However, emerging conversion methods such as dehydration, biochar production, and chemical hydrolysis have promising characteristics, which can be utilised in agriculture as well as for soil remediation. Valorising food waste into biofertilisers and soil amendments has great potential to combat land degradation in agricultural areas. Biofertilisers are rich in nutrients that can reduce the dependability of using conventional mineral fertilisers. Food waste products, unlike mineral fertilisers, can also be used as soil amendments to improve productivity. These characteristics of food wastes assist in the remediation of contaminated soils. This paper reviews the volume of food waste within the food chain and types of food waste feedstocks that can be valorised into various products, including the conversion methods. Unintended consequences of the utilisation of food waste as biofertilisers and soil-amendment products resulting from their relatively low concentrations of trace element nutrients and presence of potentially toxic elements are also evaluated.
اظهر المزيد [+] اقل [-]Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan النص الكامل
2021
Yin, Zheng | Qiu, Dong | Zhang, Meiyi
It has been shown that chemical modification of chitosan with sulfur (S) functional groups could significantly enhance its chelating capability with heavy metals included Cd(II). However, a molecular level understanding has been lacking. Here, we carried out X-ray absorption fine structure (XAFS) and Fourier transformed infrared (FTIR) spectra studies to bridge this knowledge gap. The results indicate that both Cd–O/N and Cd–S bonds exist in the complex of Cd(II) with dithiocarbamate chitosan (DTC-CTS). S functional groups (dithiocarbamate) in DTC-CTS play the major role in complexation with Cd(II) and S content affects the adsorption mechanism. At low S content, Cd(II) is mainly adsorbed on DTC-CTS as an outer-sphere complex with two monodentate amino groups and two water molecules in tetrahedral configuration. At high S content, Cd adsorption dominantly occurs by formation of an inner-sphere complex with two bidentate mononuclear S ligands in tetrahedral configuration. This investigation provides information on the effectiveness and mechanisms of Cd(II) removal that is critical for evaluating modified chitosan applications for stabilization of Cd(II) in surface water, groundwater, soils and sediments.
اظهر المزيد [+] اقل [-]Effects of artificial light at night (ALAN) on gene expression of Aquatica ficta firefly larvae النص الكامل
2021
Chen, Yun-Ru | Wei, Wei-Lun | Tzeng, David T.W. | Owens, Avalon C.S. | Tang, Hsin-Chieh | Wu, Chia-Shong | Lin, Shih-Shun | Zhong, Silin | Yang, En-Cheng
Artificial light at night (ALAN) is a major driver of firefly population declines, but its physiological effects are not well understood. To investigate the impact of ALAN on firefly development, we exposed larval Aquatica ficta fireflies to ALAN for two weeks. High larval mortality was observed in the periods of 1–68 days and 106–134 days post-treatment, which may represent the short- and long-term impacts of ALAN. We then profiled the transcriptome of larval Aquatica ficta fireflies following two weeks of ALAN exposure. A total of 1262 (1.67% out of 75777 unigenes) were differentially expressed in the treatment group: 1157 were down-regulated, and 105 were up-regulated. Up-regulated unigenes were related to regulation of hormone levels, ecdysteroid metabolic process, and response to stimulus; down-regulated unigenes were related to negative regulation of insulin receptor signaling, germ cell development, oogenesis, spermatid development, and regulation of neuron differentiation. Transcriptome results suggest that the endocrine, reproductive, and neural development of firefly larvae could be impaired by even relatively brief period of ALAN exposure. This report contributes a much-needed molecular perspective to the growing body of research documenting the fitness impacts of ALAN on bioluminescent fireflies.
اظهر المزيد [+] اقل [-]Effects of glyphosate spray-drift on plant flowering النص الكامل
2021
Strandberg, B. | Sørensen, P.B. | Bruus, M. | Bossi, R. | Dupont, Y.L. | Link, M. | Damgaard, C.F.
Recent studies have shown that sub-lethal doses of herbicides may affect plant flowering, however, no study has established a direct relationship between the concentrations of deposited herbicide and plant flowering. Here the aim was to investigate the relationship between herbicide spray drift deposited on non-target plants and plant flowering in a realistic agro-ecosystem setting. The concentrations of the herbicide glyphosate deposited on plants were estimated by measuring the concentration of a dye tracer applied together with the herbicide. The estimated maximal and average deposition of glyphosate within the experimental area corresponded to 30 g glyphosate/ha (2.08% of the label rate of 1440 g a.i./ha) and 2.4 g glyphosate/ha (0.15% label rate), respectively, and the concentrations decreased rapidly with increasing distance from the spraying track. However, there were not a unique relation between distance and deposition, which indicate that heterogeneities of turbulence, wind speed and/or direction can strongly influence the deposition from 1 min to another during spraying. The effects of glyphosate on cumulative flower numbers and flowering time were modelled using Gompertz growth models on four non-target species. Glyphosate had a significantly negative effect on the cumulative number of flowers on Trifolium pratense and Lotus corniculatus, whereas there were no significant effects on Trifolium repens, and a positive, but non-significant, effect on number of flowers on Cichorium intybus. Glyphosate did not affect the flowering time of any of the four species significantly. Lack of floral resources is known to be of major importance for pollinator declines. The implications of the presented results for pesticide risk assessment are discussed.
اظهر المزيد [+] اقل [-]Streptomyces pactum and sulfur mediated the rhizosphere microhabitats of potherb mustard after a phytoextraction trial النص الكامل
2021
Guo, Di | Ali, Amjad | Zhang, Zengqiang
To explore the performance of Streptomyces pactum (Act12) alone (A) and jointly with sulfur (SA) in the phytoextraction practice of potentially toxic elements (PTEs) (Cd and Zn), as well as their effects on soil chemical properties and microbial community composition, this paper selected potherb mustard (Brassica juncea, Coss.) as the test plant to assess the feedback of soil-plant ecosystems. Metal uptake values in lone Act12 treatments were higher than that of Act12 + sulfur treatments, and showed dose dependent with Act12 due to the higher biomass production. According to the biochemical analyses of rhizosphere soils, Act12 inoculation significantly increased urease (20.4%) and dehydrogenase (58.5%) while reducing alkaline phosphatase (68.0%) activity. The production of soil organic acids was, in descending order, formic acid > oxalic acid > malic acid > propionic acid and indicated a stimulated variation under treatments (SA > A > control). High-throughput sequencing revealed that bacterial community compositions were consistent in both phylum and genus taxonomies, while the final overall proportions were modified. The populations of the predominant phyla Proteobacteria and Bacteroidetes increased after sulfur application. The contribution of Act12 to the relative abundance of microbiota was minor compared to sulfur. Based on a redundancy analysis, soil chemical properties are the drivers of microbial activities and the main contributor to plant growth. Our results suggested Act12 inoculation may be part of an effective strategy enhancing phytoremediation of PTE-contaminated soils through chemical and biotic processes, and provided important implications for sustainable land utilization and crop production.
اظهر المزيد [+] اقل [-]