خيارات البحث
النتائج 1431 - 1440 من 8,088
Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition النص الكامل
2021
Zhang, Gen | Jing, Shengao | Xu, Wanyun | Gao, Yaqin | Yan, Chao | Liang, Linlin | Huang, Cheng | Wang, Hongli
Atmospheric peroxyacetyl nitrate (PAN) and ozone (O₃) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O₃, particulate matter with aerodynamic diameter smaller than 2.5 μm (PM₂.₅), nitrogen oxides (NOₓ), carbon monoxide (CO), and meteorological parameters from December 2016 to November 2017 in Shanghai. Overall, high hourly maximum PAN and O₃ were found to be 7.0 and 185 ppbv in summer, 6.2 and 146 ppbv in autumn, 5.8 and 137 ppbv in spring, and 6.0 and 76.7 ppbv in winter, respectively. Continental air masses probably carried atmospheric pollutants to the sampling site, while frequent maritime winds brought in less polluted air masses. Furthermore, positive correlations (R: 0.72–0.85) between PAN and O₃ were found in summer, indicating a predominant role of photochemistry in their formation. Unlike in summer, weak or no correlations between PAN and O₃ were featured during the other seasons, especially in winter, due to their different loss pathways. Unexpectedly, positive correlations between PAN and PM₂.₅ were found in all seasons. During summer, moderate correlation could be attributed to the strong photochemistry acting as a common driver in the formation of secondary aerosols and PAN. During winter, high PM₂.₅ might promote PAN production through HONO production, hence resulting in a good positive correlation. Additionally, the loss of PAN by thermal decomposition (TPAN) only accounted for a small fraction (ca. 1%) of the total (PAN + TPAN) during a typical winter episode, while it significantly reached 14.4 ppbv (71.1% of the total) in summer.
اظهر المزيد [+] اقل [-]A comparative study of immobilizing ammonium molybdophosphate onto cellulose microsphere by radiation post-grafting and hybrid grafting for cesium removal النص الكامل
2021
Dong, Zhen | Du, Jifu | Chen, Yanliang | Zhang, Manman | Zhao, Long
Ammonium molybdophosphate (AMP) exhibits high selectivity towards Cs but it cannot be directly applied in column packing, so it is necessary to prepare AMP–based adsorbents into an available form to improve its practicality. This work provided two AMP immobilized cellulose microspheres (MCC@AMP and MCC-g-AMP) as adsorbents for Cs removal by radiation grafting technique. MCC-g-AMP was prepared by radiation graft polymerization of GMA on microcrystalline cellulose microspheres (MCC) followed by reaction with AMP suspension, and MCC@AMP was synthesized by radiation hybrid grafting of AMP and GMA onto MCC through one step. The different structures and morphologies of two adsorbents were characterized by FTIR and SEM. The adsorption properties of two adsorbents against Cs were investigated and compared in batch and column experiments under different conditions. Both adsorbents were better obeyed pseudo-second-order kinetic model and Langmuir model. MCC-g-AMP presented faster adsorption kinetic and more stable structure, whereas MCC@AMP presented more facile synthesis and higher adsorption capacity. MCC@AMP was pH independent in the range of pH 1–12 but MCC-g-AMP was sensitive to pH for Cs removal. The saturated column adsorption capacities of MCC@AMP and MCC-g-AMP were 5.4 g-Cs/L-ad and 0.75 g-Cs/L-ad in column adsorption experiments at SV 10 h⁻¹. Both adsorbents exhibited very high radiation stability and can maintain an adsorption capacity of >85% even after 1000 kGy γ-irradiation. On the basis, two AMP-loaded adsorbents possessed promising application in removal of Cs from actual contaminated groundwater. These findings provided two efficient adsorbents for treatment of Cs in radioactive waste disposal.
اظهر المزيد [+] اقل [-]Mitochondria damage in ambient particulate matter induced cardiotoxicity: Roles of PPAR alpha/PGC-1 alpha signaling النص الكامل
2021
Jiang, Qixiao | Ji, Andong | Li, Daochuan | Shi, Limei | Gao, Mengyu | Lv, Na | Zhang, Ying | Zhang, Rong | Chen, Rui | Chen, Wen | Zheng, Yuxin | Cui, Lianhua
Particulate matter (PM) had been associated with cardiotoxicity, while the mechanism of toxicity has yet to be elucidated, with mitochondria dysfunction as a potential candidate. To investigate the potential cardiotoxic effects of ambient PM exposure and assess the damage to cardiac mitochondria, C57/B6 mice were exposed to filtered air or real ambient PM for three or six weeks. Furthermore, to reveal the role of peroxisome proliferators-activated receptor alpha (PPAR alpha) in PM exposure induced cardiotoxicity/mitochondria damage, animals were also co-treated with PPAR alpha agonist WY 14,643 or PPAR alpha antagonist GW 6471. Cardiotoxicity was assessed with echocardiography and histopathology, while mitochondria damage was evaluated with mitochondria membrane potential measurement and transmission electron microscopy. Potential impacts of PM exposure to PPAR alpha signaling were detected with co-immunoprecipitation and western blotting. The results indicated that exposure to ambient PM exposure induced cardiotoxicity in C57/B6 mice, including altered cardiac functional parameters and morphology. Cardiac mitochondria damage is detected, in the form of compromised mitochondria membrane potential and morphology. Molecular investigations revealed disruption of PPAR alpha interaction with peroxisome proliferator-activated receptor gamma coactivator-1A (PGC-1a) as well as altered expression levels of PPAR alpha downstream genes. Co-treatment with WY 14,643 alleviated the observed toxicities, while co-treatment with GW 6471 had mixed results, exaggerating most cardiotoxicity and mitochondrial damage endpoints but alleviating some cardiac functional parameters. Interestingly, WY 14,643 and GW 6471 co-treatment seemed to exhibit similar regulative effects towards PPAR alpha signaling in animals exposed to PM. In conclusion, ambient PM exposure indeed induced cardiotoxicity in C57/B6 mice, in which cardiac mitochondria damage and disrupted PPAR alpha signaling are contributors.
اظهر المزيد [+] اقل [-]Blood cadmium and physical function limitations in older adults النص الكامل
2021
García-Esquinas, Esther | Téllez-Plaza, María | Pastor-Barriuso, Roberto | Ortolá, Rosario | Olmedo, Pablo | Gil, Fernando | López-García, Esther | Navas-Acien, Ana | Rodríguez-Artalejo, Fernando
Cadmium (Cd) is a toxic metal found in tobacco, air and food. Recent cross-sectional studies have suggested that Cd negatively impacts physical performance, but the prospective association is uncertain.We used data from 2548 older adults from the Seniors-ENRICA II cohort in Madrid, Spain. Whole blood Cd levels were measured at baseline using inductively coupled plasma-mass spectrometry. At baseline (2017) and follow-up (2019), overall physical function was evaluated using the physical component summary (PCS) of the SF 12-Item Health questionnaire, lower-extremity performance with the Short Physical Performance Battery (SPPB), muscle weakness with a hand dynamometer, and frailty with a Deficit Accumulation index. Mobility limitations and disability in instrumental activities of daily living (IADL) were ascertained with standardized questionnaires. Analyses were adjusted for relevant confounders, including tobacco smoke, number of cigarettes smoked per day and time since cessation in former smokers.In cross-sectional analyses, odds ratios (95% confidence interval) per two-fold increase in blood Cd were 1.16 (1.03; 1.31) for low PCS scores, 1.08 (0.97; 1.20) for impaired lower-extremity performance, 1.10 (0.98; 1.23) for low grip strength, 1.11 (1.02; 1.20) for mobility limitations, 1.16 (1.02; 1.31) for frailty, and 1.26 (1.08; 1.47) for IADL disability. In longitudinal analyses, corresponding hazard ratios were 1.25 (1.03; 1.51) for low PCS scores, 1.14 (1.03; 1.27) for impaired lower-extremity performance, 1.02 (0.92; 1.13) for low grip strength, 1.03 (0.91; 1.16) for mobility limitations, and 1.16 (1.00; 1.35) for frailty. All the associations where consistent when current smokers were excluded from the analyses.Our results support the role of Cd as a risk factor for physical function impairments in older adults.
اظهر المزيد [+] اقل [-]Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium النص الكامل
2021
Hernández-Garnica, M. | García-García, J.D. | Moreno-Sánchez, R. | Sánchez-Thomas, R.
Worldwide increasing levels of lead in water systems require the search for efficient ecologically friendly strategies to remove it. Hence, lead accumulation by the free-living algae-like Euglena gracilis and its effects on cellular growth, respiration, photosynthesis, chlorophyll, calcium, and levels of thiol- and phosphate-molecules were analyzed. Photosynthetic cells were able to accumulate 4627 mg lead/kgDW after 5 days of culture with 200 μM Pb²⁺. Nevertheless, exposure to 50, 100 and 200 μM Pb²⁺ for up to 8 days did not modify growth, viability, chlorophyll content and oxygen consumption/production. Enhanced biosynthesis of thiol molecules and polyphosphates, i.e. the two canonical metal ion chelation mechanisms in E. gracilis, was not induced under such conditions. However, in cells cultured in the absence of phosphate, lead accumulation and polyphosphate content markedly decreased, while culturing in the absence of sulfate did not modify the accumulation of this metal. In turn, the total amount of intracellular calcium slightly increased as the amount of intracellular lead increased, whereas under Ca²⁺ deficiency lead accumulation doubled. Therefore, the results indicated that E. gracilis is highly resistant to lead through mechanisms mediated by polyphosphates and Ca²⁺ and can in fact be classified as a lead hyperaccumulator microorganism.
اظهر المزيد [+] اقل [-]Heavy metals and metalloids concentrations across UK urban horticultural soils and the factors influencing their bioavailability to food crops النص الكامل
2021
Crispo, Marta | Dobson, Miriam C. | Blevins, Roscoe S. | Meredith, Will | Lake, Janice A. | Edmondson, Jill L.
Urban horticulture (UH) has been proposed as a solution to increase urban sustainability, but the potential risks to human health due to potentially elevated soil heavy metals and metalloids (HM) concentrations represent a major constraint for UH expansion. Here we provide the first UK-wide assessment of soil HM concentrations (total and bioavailable) in UH soils and the factors influencing their bioavailability to crops. Soils from 200 allotments across ten cities in the UK were collected and analysed for HM concentrations, black carbon (BC) and organic carbon (OC) concentrations, pH and texture. We found that although HM are widespread across UK UH soils, most concentrations fell below the respective UK soil screening values (C4SLs): 99 % Cr; 98 % As, Cd, Ni; 95 % Cu; 52 % Zn. However, 83 % of Pb concentrations exceeded C4SL, but only 3.5 % were above Pb national background concentration of 820 mg kg⁻¹. The bioavailable HM concentrations represent a small fraction (0.01–1.8 %) of the total concentrations even for those soils that exceeded C4SLs. There was a significant positive relationship between both total and bioavailable HM and soil BC and OC concentrations. This suggest that while contributing to the accumulation of HM concentrations in UH soils, BC and OC may also provide a biding surface for the bioavailable HM concentrations contributing to their immobilisation. These findings have implications for both management of the risk to human health associated with UH growing in urban soils and with management of UH soil. There is a clear need to understand the mechanisms driving soil-to-crop HM transfer in UH to improve potentially restrictive C4SL (e.g. Pb) especially as public demand for UH land is growing. In addition, the UH community would benefit from education programs promoting soil management practices that reduce the risk of HM exposure - particularly in those plots where C4SLs were exceeded.
اظهر المزيد [+] اقل [-]Effects of two algicidal substances, ortho-tyrosine and urocanic acid, on the growth and physiology of Heterosoigma akashiwo النص الكامل
2021
Quan, Honglin | Zhang, Yuan | Yin, Pinghe | Zhao, Ling
Heterosigma akashiwo is a commonly found harmful microalgae, however, there are only few studies on its control using algicidal components particularly those identified from algicidal bacteria. In our previous study, ortho-tyrosine and urocanic acid identified from Bacillus sp. B1 showed a significantly high algicidal effect on H. akashiwo. The growth inhibition rates of H. akashiwo after 96 h of treatment with 300 μg/mL o-tyrosine and 500 μg/mL urocanic acid were 91.06% and 88.07%, respectively. Through non-destructive testing by Pulse Amplitude Modulation fluorometry and flow cytometer, the effects of o-tyrosine and urocanic acid on H. akashiwo PS II and physiological parameters (cell volume, mitochondrial membrane potential, and membrane permeability) were estimated. This study shows that o-tyrosine affected the photosynthesis system of H. akashiwo, decreased the mitochondrial membrane potential, and increased the membrane permeability of the algal cells. Treatment with urocanic acid decreased the mitochondrial membrane potential, resulting in the inhibition of algal cell growth and reproduction, but had little effect on membrane permeability and photosynthetic system. Our results may imply that when uridine degrades, surviving H. akashiwo cells may be reactivated. Therefore, o-tyrosine and urocanic acid have the potential to become new biological algicides, which can effectively control the growth of H. akashiwo.
اظهر المزيد [+] اقل [-]Effects of norfloxacin on nitrate reduction and dynamic denitrifying enzymes activities in groundwater النص الكامل
2021
Chen, Linpeng | Huang, Fuyang | Zhang, Chong | Zhang, Jia | Liu, Fei | Guan, Xiangyu
The impact of antibiotics on denitrification has attracted widespread attention recently. Norfloxacin, as a representative of fluoroquinolone antibiotics, is extensively detected in groundwater. However, whether the release of norfloxacin into the groundwater poses potential risks to denitrification remains unclear. In this study, effect of norfloxacin on denitrification was investigated. The results showed that increasing norfloxacin from 0 to 100 μg/L decreased nitrate removal rate from 0.68 to 0.44 mg/L/h, but enhanced N₂O emission by 177 folds. Additionally, 100 μg/L of norfloxacin decreased nitrite accumulation by 50.6%. Corresponding inhibition of norfloxacin on bacterial growth, carbon source utilization, electron transport system activity and genes expression was revealed. Furthermore, denitrifying enzyme dynamic monitoring results showed that norfloxacin inhibited nitrate reductase activity, and enhanced nitrite reductase activity to some extent in denitrification process, which was consistent with the variations of nitrate and nitrite. Meanwhile, sensitivity analysis demonstrated that nitrate reductase was more easily affected by norfloxacin than nitrite reductase. Overall, this study suggests that multiple regulation of denitrifying enzyme activity contributes to evaluating the comprehensive effects of antibiotics on groundwater denitrification.
اظهر المزيد [+] اقل [-]Growth and photosynthetic responses of Ochromonas gloeopara to cadmium stress and its capacity to remove cadmium النص الكامل
2021
Wu, Guangjin | Cheng, Jiahui | Wei, Junjun | Huang, Jing | Sun, Yunfei | Zhang, Lu | Huang, Yuan | Yang, Zhou
Cadmium (Cd) is one of the predominant anthropogenic pollutants in aquatic systems. As Cd has negative effects on species at all trophic levels, the community composition in aquatic habitats can be changed as a result of Cd stress. The response of mixotrophic protists to environmental stressors is particularly important as they act as both producers and consumers in complex planktonic communities. In this study, we used mixotrophic Ochromonas gloeopara to study its growth and photosynthetic responses to Cd, and specially focused on the effects of initial Cd concentrations and nutrient levels on its capacity to remove Cd. Results showed that when Cd concentration reached 0.5 mg L⁻¹, the growth rate and carrying capacity were significantly inhibited, whereas the photosynthesis was markedly decreased when Cd concentration reached 0.15 mg L⁻¹. Moreover, under Cd concentration 0.15, 0.5, 0.9, 1.6, and 2.0 mg L⁻¹, the removal efficiencies of Cd by O. gloeopara were 83.2%, 77.7%, 74.6%, 70.1%, and 68.8%, respectively. The increase of nitrogen did not cause significant effect on the removal capacity of Cd by O. gloeopara, but increased concentration of phosphorus significantly enhanced the removal capacity of Cd. Our findings indicated that the mixotrophic O. gloeopara has strong tolerance and capacity to remove Cd, and increasing concentration of phosphorus can increase its removal capacity, suggesting that O. gloeopara has great potential application value in mitigating Cd pollution in waters.
اظهر المزيد [+] اقل [-]Toxicokinetics and systematic responses of differently sized indium tin oxide (ITO) particles in mice via oropharyngeal aspiration exposure النص الكامل
2021
Qu, Jing | Wang, Jianli | Zhang, Haopeng | Wu, Jingying | Ma, Xinmo | Wang, Shile | Zang, Yiteng | Huang, Yuhui | Ma, Ying | Cao, Yuna | Wu, Daming | Zhang, Ting
Indium tin oxide (ITO) is an important semiconductor material, because of increasing commercial products consumption and potentially exposed workers worldwide. So, urgently we need to assess and manage potential health risks of ITO. Although the Occupational Exposure Limit (OEL) has been established for ITO exposure, there is still a lack of distinguishing the risks of exposure to particles of different sizes. Therefore, obtaining toxicological data of small-sized particles will help to improve its risk assessment data. Important questions raised in quantitative risk assessments for ITO particles are whether biodistribution of ITO particles is affected by particle size and to what extent systematic adverse responses is subsequently initiated. In order to determine whether this toxicological paradigm for size is relevant in ITO toxic effect, we performed comparative studies on the toxicokinetics and sub-acute toxicity test of ITO in mice. The results indicate both sized-ITO resided in the lung tissue and slowly excreted from the mice, and the smaller size of ITO being cleared more slowly. Only a little ITO was transferred to other organs, especially with higher blood flow. Two type of ITO which deposit in the lung mainly impacts respiratory system and may injure liver or kidney. After sub-acute exposure to ITO, inflammation featured by neutrophils infiltration and fibrosis with both dose and size effects have been observed. Our findings revealed toxicokinetics and dose-dependent pulmonary toxicity in mice via oropharyngeal aspiration exposure, also replenish in vivo risk assessment of ITO. Collectively, these data indicate that under the current OEL, there are potential toxic effects after exposure to the ITO particles. The observed size-dependent biodistribution patterns and toxic effect might be important for approaching the hazard potential of small-sized ITO in an occupational environment.
اظهر المزيد [+] اقل [-]