خيارات البحث
النتائج 1431 - 1440 من 7,288
Impact of smelter re-development on spatial and temporal airborne Pb concentrations النص الكامل
2022
Alankarage, Dileepa | Juhasz, Albert L.
Total suspended particulate (TSP) and PM₁₀ filters collected from two ambient air monitoring stations in Port Pirie were analysed to determine the impact of a lead (Pb) smelter redevelopment on air quality parameters including total elemental concentration, Pb isotopic ratio, Pb bioaccessibility and Pb speciation. Filters from 2009 to 2020 were analysed with a focus on samples from 2017 (immediately prior to smelter redevelopment) and 2020 (post-smelter redevelopment). Lead concentration in 2009–2020 TSP was variable ranging up to 6.94 μg m⁻³ (mean = 0.57 μg m⁻³), however, no significant decrease in Pb concentration was observed at either Port Pirie West (p = 0.56, n = 34) or Oliver Street (p = 0.32, n = 28) monitoring stations when 2017 and 2020 TSP values were compared. Similarly, no significant difference (p = 0.42) in PM₁₀ Pb concentration was observed in 2017 (mean = 0.80 μg m⁻³) and 2020 (0.60 μg m⁻³) Oliver Street filters. Although no change in percentage Pb bioaccessibility was observed when 2017 and 2020 Port Pirie West TSP samples were compared (mean of 88.7% versus 88.0%), Pb bioaccessibility was lower (p < 0.005) in both 2020 TSP (mean of 83.9% versus 62.9%) and PM₁₀ (mean of 70.8% versus 58.3%) Oliver Street filters compared to 2017. While scanning electron microscopy, energy dispersive x-ray spectroscopy identified a number of Pb phases within filters (galena, anglesite, cerussite, conglomerates), differences in Pb speciation between 2017 and 2020 filters could not be identified although it was presumed that this influenced Pb bioaccessibility outcomes at Oliver Street. Data from this study suggests that recent smelter redevelopments have not significantly decreased the concentrations of airborne Pb in Port Pirie although re-entrainment of soil-Pb from historical impact may also be a contributing Pb source.
اظهر المزيد [+] اقل [-]Prenatal exposure to ambient air pollution and adverse birth outcomes: An umbrella review of 36 systematic reviews and meta-analyses النص الكامل
2022
Nyadanu, Sylvester Dodzi | Dunne, Jennifer | Tessema, Gizachew Assefa | Benjamin, Ben | Kumi-Boateng, Bernard | Lee Bell, Michelle | Duko, Bereket | Pereira, Gavin
Multiple systematic reviews and meta-analyses linked prenatal exposure to ambient air pollutants to adverse birth outcomes with mixed findings, including results indicating positive, negative, and null associations across the pregnancy periods. The objective of this study was to systematically summarise systematic reviews and meta-analyses on air pollutants and birth outcomes to assess the overall epidemiological evidence. Systematic reviews with/without meta-analyses on the association between air pollutants (NO₂, CO, O₃, SO₂, PM₂.₅, and PM₁₀) and birth outcomes (preterm birth; stillbirth; spontaneous abortion; birth weight; low birth weight, LBW; small-for-gestational-age) up to March 30, 2022 were included. We searched PubMed, CINAHL, Scopus, Medline, Embase, and the Web of Science Core Collection, systematic reviews repositories, grey literature databases, internet search engines, and references of included studies. The consistency in the directions of the effect estimates was classified as more consistent positive or negative, less consistent positive or negative, unclear, and consistently null. Next, the confidence in the direction was rated as either convincing, probable, limited-suggestive, or limited non-conclusive evidence. Final synthesis included 36 systematic reviews (21 with and 15 without meta-analyses) that contained 295 distinct primary studies. PM₂.₅ showed more consistent positive associations than other pollutants. The positive exposure-outcome associations based on the entire pregnancy period were more consistent than trimester-specific exposure averages. For whole pregnancy exposure, a more consistent positive association was found for PM₂.₅ and birth weight reductions, particulate matter and spontaneous abortion, and SO₂ and LBW. Other exposure-outcome associations mostly showed less consistent positive associations and few unclear directions of associations. Almost all associations showed probable evidence. The available evidence indicates plausible causal effects of criteria air pollutants on birth outcomes. To strengthen the evidence, more high-quality studies are required, particularly from understudied settings, such as low-and-middle-income countries. However, the current evidence may warrant the adoption of the precautionary principle.
اظهر المزيد [+] اقل [-]Nitrate source apportionment and risk assessment: A study in the largest ion-adsorption rare earth mine in China النص الكامل
2022
Zhang, Qiuying | Shu, Wang | Li, Fadong | Li, Ming | Zhou, Jun | Tian, Chao | Liu, Shanbao | Ren, Futian | Chen, Gang
Nitrate (NO₃⁻) pollution in water bodies has received widespread attention, but studies on nitrogen transformation and pollution risk assessment are still limited, especially in rare earth mining areas. In this study, surface and groundwater samples were collected from the largest rare earth mining site in southern China, and analyzed for the hydrochemical and stable isotopic characteristics. The results showed that the NO₃⁻ concentrations ranged from 1.61 to 453.11 mg/L, with 35% of surface water and 53.3% of groundwater samples exceeding the WHO standard (i.e., 50 mg/L). Health risk assessment showed that 31.4% of the water samples had a moderate to high non-carcinogenic risk, and the high-risk areas were concentrated in rare earth mining regions. Additionally, adults were more vulnerable to the non-carcinogenic health risks than children. The high variability of δ¹⁵N–NO₃⁻ (from −6.43 to 17.09‰) and δ¹⁸O–NO₃⁻ (from −7.91 to 22.79‰) showed that NO₃⁻ was influenced by multiple nitrogen sources and transformation processes. Hydrochemistry and isotopic evidence further indicated that NO₃⁻ was primarily influenced by nitrification and hydraulic connection between surface and groundwater. The results of the Bayesian mixing model showed that about 70% of NO₃⁻ originated from mine drainage and soil N in the rare earth mining area, while more than 90% of NO₃⁻ originated from fertilizer, soil N, and manure and sewage in rural and urban areas in the middle and downstream. This study suggests reducing anthropogenic nitrogen discharge (e.g., leaching agents and fertilizer inputs) as the primary means of NO₃⁻ pollution control with biogeochemical processes (e.g., denitrification) to further reduce its pollution.
اظهر المزيد [+] اقل [-]Microcystin pollution in lakes and reservoirs: A nationwide meta-analysis and assessment in China النص الكامل
2022
Wei, Huimin | Jia, Yunlu | Wang, Zhi
The frequent occurrence of microcystins (MCs) has caused a series of water security issues worldwide. Although MC pollution in natural waters of China has been reported, a systematic analysis of the risk of MCs in Chinese lakes and reservoirs is still lacking. In this study, the distribution, trend, and risk of MCs in Chinese lakes and reservoirs were comprehensively revealed through meta-analysis for the first time. The results showed that MC pollution occurrence in numerous lakes and reservoirs have been reported, with MC pollution being distributed in the waters of 15 provinces in China. For lakes, the maximum mean total MC (TMC) and dissolved MC (DMC) concentrations occurred in Lake Dianchi (23.06 μg/L) and Lake Taihu (1.00 μg/L), respectively. For reservoirs, the maximum mean TMC and DMC concentrations were detected in Guanting (4.31 μg/L) and Yanghe reservoirs (0.98 μg/L), respectively. The TMC concentrations in lakes were significantly higher than those in the reservoirs (p < 0.05), but no difference was observed in the DMC between the two water bodies (p > 0.05). Correlation analysis showed that the total phosphorus concentrations, pH, transparency, chlorophyll a, and dissolved oxygen were significantly related to the DMC in lakes and reservoirs. The ecological risks of DMC in Chinese lakes and reservoirs were generally at low levels, but high or moderate ecological risks of TMC had occurred in several waters, which were not negligible. Direct drinking water and consumption of aquatic products in several MC-polluted lakes and reservoirs may pose human health risks. This study systematically analyzed the pollution and risk of MCs in lakes and reservoirs nationwide in China and pointed out the need for further MC research and management in waters.
اظهر المزيد [+] اقل [-]The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches النص الكامل
2022
Lv, Xiaomei | Wu, Yicong | Chen, Guilian | Yu, Lili | Zhou, Yi | Yu, Yingxin | Lan, Shanhong | Hu, Junjie
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑₄PEDCs and ∑₆PAEs ranged from 2202 to 3404 ng/L and 834–4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37–69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
اظهر المزيد [+] اقل [-]Inputs and sources of Pb and other metals in urban area in the post leaded gasoline era النص الكامل
2022
Ye, Jiaxin | Li, Junjie | Wang, Pengcong | Ning, Yongqiang | Liu, Jinling | Yu, Qianqian | Bi, Xiangyang
The contamination status of heavy metals in urban environment changes frequently with the industrial structure adjustment, energy conservation and emission reduction and thus requires timely investigation. Based on enrichment factor, multivariate statistical analysis and isotope fingerprinting, we assessed comprehensively the inputs and sources of heavy metals in different samples from an urban area that was less impacted by leaded gasoline exhaust. The road dust contained relatively high levels of Cr, Pb and Zn (with enrichment factor >2) that originated from both exhaust and non-exhaust traffic emissions, while the moss plants could accumulate high levels of Pb and Zn from the deposition of traffic exhaust emission. This suggest that the traffic emission is still an important source of metals in the urban area although gasoline is currently lead free. On the contrary, the occurrences of metals in the urban soils were controlled by natural sources and non-traffic anthropogenic emission. These findings revealed that different samples would receive different inputs of metals from different sources in the urban area, and the responsiveness and sensitiveness of these urban samples to metal inputs can be ranked as moss ≥ dust > soil. Taken together, our results suggested that in order to avoid generalizing and get detail source information, multi-samples and multi-measures must be adopted in the assessment of integrated urban environmental quality.
اظهر المزيد [+] اقل [-]Short- and long-term effects of decabromodiphenyl ether (BDE-209) on sediment denitrification using a semi-continuous microcosm النص الكامل
2022
Wan, Rui | Li, Xiaoxiao | Zha, Yunyi | Zheng, Xiong | Huang, Haining | Li, Minghui
The widespread use of decabromodiphenyl ether (BDE-209) resulted in its deposition in environmental media and biological matrices. However, to date, few studies focused on the effect of BDE-209 on microorganisms, and those available were investigated via an enclosed system completely cutting off the communication between testing system and its native environment. Herein, 4.0 mg/g BDE-209 acute exposure induced a 20% decline of NOX-N (the sum of NO₃⁻–N and NO₂⁻–N) removal efficiency and a significant accumulation of NO₂⁻–N and N₂O. These inhibitory effects presented in a BDE-209 concentration-dependent manner. Using a semi-continuous microcosm, the inhibitory effects of BDE-209 on denitrification were observed to be significantly enhanced with the extending of exposure duration. Denitrifying genes assay illustrated that BDE-209 has an insignificant effect on the global abundance of denitrifying bacteria because of microbial exchange with its overlying water. But the utilization of electron donor (carbon substrate), the activity of electron transport system and denitrifying enzymes were significantly inhibited by BDE-209 exposure in a exposure-duration-dependent manner. Finally, insufficient electron donor and lower efficiency of electron transport and utilization on denitrifying enzymes deteriorated the denitrification performance. These results provided a new insight into BDE-209 influence on denitrification in the natural environment.
اظهر المزيد [+] اقل [-]Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse النص الكامل
2022
Zhou, Weiwei | Lv, Haofeng | Chen, Fei | Wang, Qunyan | Li, Junliang | Chen, Qing | Liang, Bin
Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4–603.4 kg N ha⁻¹, accounting for 12%–41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%–86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.
اظهر المزيد [+] اقل [-]Organic contaminants in imported salmon feed and their effects on reef ecosystems in New Zealand النص الكامل
2022
McMullin, Rebecca M. | Chen, Ruiwen | Niu, Shan | Matthews, Will | Murschell, Trey | Wing, Stephen R. | Hageman, Kimberly J.
Organic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises – What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand. The effect of assimilation of farm-derived organic matter on contaminant profiles differed among species during the controlled feeding experiment and demonstrated that migration of individuals to a farm-associated site has the potential to increase or decrease organic contaminant concentrations. Concentrations of PCBs in Parapercis colias (blue cod), a highly resident, long-lived fish, were significantly higher at farm sites than at reference sites. While these concentrations were relatively low in a global context, this result presents blue cod as an important candidate for future monitoring of organic contaminants around point sources. PCBs and PBDEs measured in wild marine species were all below limits set by the European Union, whereas concentrations of certain HUPs, specifically dichlorodiphenyltrichloroethane (DDT) and its degradation products and endosulfan, may be of concern as a consequence of alternative anthropogenic activities. Overall, feed imported to New Zealand had relatively low levels of most organic contaminants that, at current levels, are unlikely to result in significant ecological effects to wild communities in adjacent habitats.
اظهر المزيد [+] اقل [-]Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, “AI001, and AI002” mediate cadmium translocation and phytoremediation النص الكامل
2022
Ullah, Ihsan | Mateen, Aisha | Ahmad, Mian Afaq | Munir, Iqbal | Iqbal, Aqib | Alghamdi, Khalid M.S. | Al-Solami, Habeeb M. | Siddiqui, Muhammad Faisal
Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0–30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5–25 mg/L of Cd. Expression of Cd response genes was quantified through qRT–PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27–30 μg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., “HMA2, HMA3, and HMA4” and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.
اظهر المزيد [+] اقل [-]