خيارات البحث
النتائج 1441 - 1450 من 7,214
Simultaneous capturing of mixed contaminants from wastewater using novel one-pot chitosan functionalized with EDTA and graphene oxide adsorbent
2022
Verma, Monu | Ashwani Kumar, | Lee, Ingyu | Kumar, Vinod | Park, Ju-Hyun | Kim, Hyunook
The emergence of inorganic and organic contaminants has raised great concerns owing to their adverse impact on human health and ecological security. Herein, first time one-pot process was applied for chitosan (CS) functionalization using graphene oxide (GO) and ethylenediaminetetraacetic acid (EDTA) for simultaneous capturing of toxic inorganic (lead (Pb²⁺) and cadmium (Cd²⁺)) and organic (ciprofloxacin (CIP) and sildenafil (SDF)) contaminants from wastewater. In this approach, we believe that CS would work as a backbone, GO would capture both inorganic and organic contaminants via electrostatic interactions, while EDTA would make complexation with heavy metals. Various parameters including pH, reaction time, concentration, reusability etc. were evaluated to achieve the best experimental result in monocomponent system. The prepared adsorbent displayed an excellent monolayer adsorption capacity of 351.20 and 264.10 mg g⁻¹ for Pb²⁺ and Cd²⁺, respectively, while a heterogeneous sorption capacity of 75.40 and 40.90 mg g⁻¹ for CIP and SDF, respectively. The kinetics data fitted well to Pseudo-second order (PSO) kinetics model for both types of contaminants and gave faster interaction towards metal ions (higher k₂) than organic contaminants. Experimental results showed excellent adsorption efficiencies at environmental levels in the capturing of both inorganic and organic contaminants at the same time from polluted water. The capturing mechanism of both types of contaminants was explained by elemental mapping, EDS, and FT−IR spectra. Overall, easy synthesis, excellent capturing capacity, and reusability imply that the prepared adsorbent has a sufficient potential for the treatment of co-existing toxic contaminants in water.
اظهر المزيد [+] اقل [-]Association of noise exposure, plasma microRNAs with arterial stiffness among Chinese workers
2022
Wang, Dongming | Xiao, Yang | Li, Wenzhen | Feng, Xiaobing | Yi, Guilin | Chen, Zhenlong | Wu, Jie | Chen, Weihong
Long-term noise exposure is reported to damage cardiovascular system, but the relationship between occupational noise exposure and arterial stiffness (AS) and the underlying mechanism is still unclear. We aimed to investigate the association of occupational noise exposure with arterial stiffness (AS), and further explore the mediation roles of microRNAs (miRNAs). A total of 838 workers were recruited from two companies in Wuhan, Hubei, China. Cumulative occupational noise exposure (CNE) was assessed through noise level of job title and work years in occupational noise. The AS for the participants were evaluated using brachial-ankle pulse wave velocity (baPWV) measured by an oscillometric device. Each 1-unit increase in CNE levels was significantly associated with a 0.002 (95% confidence interval (CI) = 0.001–0.003) unit increase in ln-transformed values of baPWV. In the sex-specific analysis, the association was significant in males (β = 0.002, 95%CI = 0.001–0.003). Meanwhile, the risk of bilateral hearing loss at high frequency was significantly higher in the high-exposed group than non-exposed group (OR = 1.895, 95%CI = 1.024–3.508), and participants with bilateral hearing loss at high frequency had a significantly higher level of ln-transformed baPWV (β = 0.032, 95%CI = 0.003–0.061). Occupational noise exposure and AS were both negatively associated with plasma miR-92a-3p and miR-21–5p, and the two miRNAs mediated 15.0% and 16.8% of the association of occupational noise with AS (P < 0.05). Our findings suggest that occupational noise exposure is positively associated with AS, and plasma miR-92a-3p and miR-21–5p may partly mediate such association.
اظهر المزيد [+] اقل [-]Sequestration of free and chelated Ni(II) by structural Fe(II): Performance and mechanisms
2022
He, Hongping | Wang, Jiaxin | Fei, Xunchang | Wu, Deli
Ni(II) and chelated Ni(II) in wastewater are of environmental concern. This study explores the sequestration potential of structural Fe(II) in solid phase (≡Fe(II)) on Ni(II) and EDTA-Ni(II) using freshly prepared ferrous hydroxyl complex (FHC) as the Fe(II)-bearing mineral. The 1 mM Ni(II) could be completely sequestrated in 20 min by 3 mM FHC, although the sequestrated Ni(II) was partially released after 20 min. It is calculated that up to 156 mg Ni(II)/g Fe(II) can be sequestrated by ≡Fe(II) under neutral pH and anaerobic condition. According to the characterizations of the solid products, the large surface area for Ni(II) adsorption and the high ≡Fe(II) reduction capacity for Ni(II) reduction are the main contributors to the Ni(II) sequestration. After the reaction, the FHC is transformed to stable Fe–Ni layered double hydroxides. The concomitant ions can be either promotional or inhibitory to the sequestration performance depending on the ion type. The combination of FHC and Fe(III) can effectively sequestrate EDTA-Ni(II), whereas FHC alone has a low efficiency. Fe(III) substitutes Ni(II) from the EDTA-Ni(II), benefiting the subsequent Ni(II) sequestration by ≡Fe(II). This study demonstrates that ≡Fe(II) suspension is an cost-effective option for remediating Ni(II)-containing wastewater.
اظهر المزيد [+] اقل [-]Characteristics of oxytetracycline stress-sensitive microbe-dissolved organic matter component interactions during composting
2022
Zhang, Xu | Zhang, Xinlin | Cui, Hongyang | Zhao, Ran | Zhao, Meiyang | Wei, Zimin
Dissolved organic matter (DOM) has important impacts on the transportation of antibiotics through chemical and biological processes in composting. The interaction between DOM and antibiotics is reciprocal. The interaction between DOM ligands and antibiotics could be characterized based on a technique combining parallel factor analysis (PARAFAC) and microbial community structure analysis. However, PARAFAC cannot reveal the dynamic changes in each DOM peak in one PARAFAC component under antibiotic stress. In this study, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and bacterial community diversity analyses were employed to reveal the effects of oxytetracycline (OTC) stress and the key microorganisms on the transformation of different fluorescent peaks from DOM PARAFAC components during chicken manure composting. The results showed that OTC inhibits the transformation between DOM PARAFAC components by inhibiting the core microbial activities involved in the transformation of DOM components. Protein-like components (C1 and C2) were more sensitive to OTC residue, and components with a high humification degree promoted the degradation of OTC. The interaction between special DOM PARAFAC components and certain bacteria affects the degradation of OTC. The DOM PARAFAC components A2(C1), B1(C2), B2(C2) and Z1(C4) enhanced OTC degradation by stimulating the genera Pseudomonas, Glycomyces and Hyphomicrobium. With these promising results, the true effect of DOM PARAFAC components on the degradation of OTC can be revealed, which is helpful for addressing antibiotic contamination to improve the bioavailability of compost products.
اظهر المزيد [+] اقل [-]Effect of diesel blended with di-n-butyl ether/1-octanol on combustion and emission in a heavy-duty diesel engine
2022
Wang, Jinglan | Sun, Lifang | Luan, Pengpeng | Wu, Yangyi | Cheng, Zhanjun | Zhang, Zhao | Kong, Xiangen | Liu, Haifeng | Chen, Guanyi
Two kinds of C₈ isomers, di-n-butyl ether (DNBE) and 1-octanol, as potential oxygen-containing alternative fuels, show important value in the trade-off between efficiency and emission. In the present work, the effects of DNBE/1-octanol with different proportions (0, 10%, and 20%) blended into diesel on the combustion characteristics, fuel economy, and emission characteristics in a six-cylinder heavy-duty diesel engine were studied at low, medium, and high loads. 1-Octanol with a 20% blending ratio showed different combustion characteristics in the cylinder compared with the other fuels. The economic analysis showed that the brake specific fuel consumption of DNBE–diesel blend fuels was higher than that of 1-octanol–diesel blend fuels, while brake thermal efficiency was the opposite tendency. The emissions of nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) were affected by the types of blend fuels, blending ratios, and loads. In comparison with 1-octanol–diesel blend fuels, the addition of DNBE in diesel promoted the emission of nitrogen oxides, but inhibited the emissions of soot, HC, and CO. DNBE– and 1-octanol–diesel blend fuels increased the weighted brake specific fuel consumption but decreased the weighted brake thermal efficiency compared with diesel in the World Harmonized Stationary Cycle test cycle of Euro VI regulation. The weighted NOx, HC, soot, and CO emissions of blend fuels depended on the types of blend fuels and blend ratios. The weighted NOx, HC, and soot emissions were reduced by blending 1-octanol into diesel, while the weighted CO emission was increased. The weighted CO and soot emissions of diesel blended with DNBE were reduced than that of diesel.
اظهر المزيد [+] اقل [-]Proteogenomics identification of TBBPA degraders in anaerobic bioreactor
2022
Macêdo, Williane Vieira | Poulsen, Jan Struckmann | Zaiat, Marcelo | Nielsen, Jeppe Lund
Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified ¹³C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.
اظهر المزيد [+] اقل [-]Artificial light at night promotes bottom-up changes in a woodland food chain
2022
Lockett, Martin T. | Rasmussen, Rebecca | Arndt, Stefan K. | Hopkins, Gareth R. | Jones, Therésa M.
Artificial light at night (ALAN) is a recognised disruptor of biological function and ecological communities. Despite increasing research effort, we know little regarding the effect of ALAN on woody plants, including trees, or its indirect effects on their colonising invertebrates. These effects have the potential to disrupt woodland food webs by decreasing the productivity of invertebrates and their secretions, including honeydew and lerps, with cascading effects on other fauna. Here, we cultivated juvenile river red gums (Eucalyptus camaldulensis) for 40 weeks under experimentally manipulated light (ALAN) or naturally dark (control) conditions. To assess direct impacts on tree growth, we took multiple measures of growth at four time periods, and also measured physiological function, biomass and investment in semi-mature trees. To assess experimentally the direct and indirect (tree-mediated) impacts of ALAN on invertebrates, from 19 weeks onwards, we matched and mismatched trees with their original ALAN environments. We colonised trees with a common herbivore of E. camaldulensis, the red gum lerp psyllid (Glycaspis nr. brimblecombei) and then measured the effects of current and historic tree lighting treatment on the psyllid life cycle. Our data revealed direct effects of ALAN on tree morphology: E. camaldulensis trees exposed to ALAN shifted biomass allocation away from roots and into leaves and increased specific leaf area. However, while the intensity of ALAN was sufficient to promote photosynthesis (net carbon gain) at night, this did not translate into variation in tree water status or photosystem adaptation to dim night-time light for ALAN-exposed trees. We found some evidence that ALAN had broad-scale community effects—psyllid nymphs colonising ALAN trees produced more lerps—but we found no other direct or indirect impacts of ALAN on the psyllid life cycle. Our results suggest that trees exposed to ALAN may share morphological responses with trees under dim daylight conditions. Further, ALAN may have significant ‘bottom-up’ effects on Eucalyptus woodland food webs through both trees and herbivores, which may impact higher trophic levels including woodland birds, mammals and invertebrates.
اظهر المزيد [+] اقل [-]Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback
2022
Chen, Xiaomeng | Du, Zhuang | Guo, Tong | Wu, Junqiu | Wang, Bo | Wei, Zimin | Jia, Liming | Kang, Kejia
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
اظهر المزيد [+] اقل [-]Fate, source and mass budget of sedimentary microplastics in the Bohai Sea and the Yellow Sea
2022
Zhang, Mingyu | Lin, Yan | Booth, Andy M. | Song, Xikun | Cui, Yaozong | Xia, Bin | Gu, Zhangjie | Li, Yifan | Liu, Fengjiao | Cai, Minggang
As reservoirs for pollutants transported via the Yangtze and Yellow Rivers, the Bohai Sea (BS) and Yellow Sea (YS) play an important role in transporting microplastics (MPs) to the Pacific Ocean. The fate, sources and mass budget of MPs in the BS and the YS were investigated by Pearson correlation, principal component analysis-multilinear regression analysis (PCA-MRLA) and a mass balance model to sedimentary MPs data. Average MP abundances were 137 and 119 items kg⁻¹ in the Bohai and Yellow Seas, respectively. MPs <1000 μm exhibited similar distribution patterns to total organic carbon and fine-grained sediments, while MPs >1000 μm were confined in the BS and exhibited a strong positive correlation with chlorophyll-a and polyethylene terephthalate, suggesting that larger MPs might deposit faster due to biofouling or when comprised of high density polymers. PCA-MLRA analysis indicated land-based inputs (packing materials, textile material and daily commodities) were dominant in the BS, while maritime activities (fishing and mariculture) were the main source of MPs in the YS. The mass balance model revealed that the total MP input and output to the BS and the YS was 3396.92 t yr⁻¹ and 3814.81 t yr⁻¹, respectively. The major input pathway of MPs to the BS and the YS were river discharge and air deposition, respectively. Notably, 94% of MPs in the BS and the YS were deposited to sediments. This study revealed that BS and YS sediments play an important role in preventing MPs from being further transported to the Pacific Ocean, thus more attention should be paid to local ecological risk assessment.
اظهر المزيد [+] اقل [-]Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption
2022
Pan, Zhong | Liu, Qianlong | Xu, Jing | Li, Weiwen | Lin, Hui
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual⁻¹, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
اظهر المزيد [+] اقل [-]