خيارات البحث
النتائج 1491 - 1500 من 7,921
Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – A viable domain of circular economy
2021
Kee, Seng Hon | Chiongson, Justin Brian V. | Saludes, Jonel P. | Vigneswari, Sevakumaran | Ramakrishna, Seeram | Bhubalan, Kesaven
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
اظهر المزيد [+] اقل [-]A review on the valorisation of food waste as a nutrient source and soil amendment
2021
O’Connor, James | Hoang, Son A. | Bradney, Lauren | Dutta, Shanta | Xiong, Xinni | Tsang, Daniel C.W. | Ramadass, Kavitha | Vinu, Ajayan | Kirkham, M.B. | Bolan, Nanthi S.
Valorisation of food waste offers an economical and environmental opportunity, which can reduce the problems of its conventional disposal. Food waste is commonly disposed of in landfills or incinerated, causing many environmental, social, and economic issues. Large amounts of food waste are produced in the food supply chain of agriculture: production, post-harvest, distribution (transport), processing, and consumption. Food waste can be valorised into a range of products, including biofertilisers, bioplastics, biofuels, chemicals, and nutraceuticals. Conversion of food waste into these products can reduce the demand of fossil-derived products, which have historically contributed to large amounts of pollution. The variety of food chain suppliers offers a wide range of feedstocks that can be physically, chemically, or biologically altered to form an array of biofertilisers and soil amendments. Composting and anaerobic digestion are the main large-scale conversion methods used today to valorise food waste products to biofertilisers and soil amendments. However, emerging conversion methods such as dehydration, biochar production, and chemical hydrolysis have promising characteristics, which can be utilised in agriculture as well as for soil remediation. Valorising food waste into biofertilisers and soil amendments has great potential to combat land degradation in agricultural areas. Biofertilisers are rich in nutrients that can reduce the dependability of using conventional mineral fertilisers. Food waste products, unlike mineral fertilisers, can also be used as soil amendments to improve productivity. These characteristics of food wastes assist in the remediation of contaminated soils. This paper reviews the volume of food waste within the food chain and types of food waste feedstocks that can be valorised into various products, including the conversion methods. Unintended consequences of the utilisation of food waste as biofertilisers and soil-amendment products resulting from their relatively low concentrations of trace element nutrients and presence of potentially toxic elements are also evaluated.
اظهر المزيد [+] اقل [-]Indoor air quality in the primary school of China—results from CIEHS 2018 study
2021
Zhu, Yuan-duo | Li, Xu | Fan, Lin | Li, Li | Wang, Jiao | Yang, Wen-jing | Wang, Lin | Yao, Xiao-yuan | Wang, Xian-liang
Indoor air quality ((IAQ) in classrooms was associated with the daily exposure of school-age children who are particularly vulnerable to air pollutants exposure, while few data exist to evaluate classroom indoor air quality nationwide in China. The subsample of the CIEHS 2018 study was performed in 66 classrooms of 22 primary schools nationwide in China. Temperature, relative humidity, PM₂.₅, PM₁₀, CO₂, CO, formaldehyde concentrations, bacteria and fungi were detected in all classrooms by using the instruments that meet the specified accuracy. The ratios of indoor to outdoor (I/O) of PM₂.₅ were calculated in each classroom to identify whether the indoor environment the pollutants comes from outdoors. The indoor PM₂.₅, PM₁₀, CO, HCHO, bacteria and fungi GM concentration are 47.40 μg/m³, 72.91 μg/m³, 0.37 mg/m³, 0.02 mg/m³, 347.51 CFU/m³ and 362.76 CFU/m³, respectively. We observed that there were 66.5%, 52.6%, 22.4%, 1.8%, and 9.6% of the classrooms that exceeded the guideline values of PM₂.₅, PM₁₀, CO₂, HCHO, and bacteria, respectively. It should be attention that all of the classroom's PM₂.₅ concentrations in Shijiazhuang and Nanning, PM₁₀ concentrations in Nanning, CO₂ concentration in Lanzhou were exceeded the suggested values. Bacteria contamination in Shijiazhuang's classrooms is also serious. All classroom CO concentrations meet the requirement. The results indicated that classroom indoor PM₂.₅ was significantly positively correlated with indoor PM₁₀ and CO₂, while was negative correlated with temperature, CO, and fungi. Our results suggest that indoor air pollution in classrooms was a severe problem in Chinese primary schools. It is necessary to strengthen ventilation in the classroom to improve indoor air quality. What's more, a healthy learning environment should be created for primary school students.
اظهر المزيد [+] اقل [-]Disentangling the contribution of the transboundary out-flow from the Asian continent to Tokyo, Japan
2021
Shimada, Kojiro | Mizukoshi, Manatsu | Chan, Chak K. | Kim, Yong Pyo | Lin, Neng-Huei | Matsuda, Kazuhide | Itahashi, Syuichi | Nakashima, Yoshihiro | Kato, Shungo | Hatakeyama, Shirō
We assessed the contribution of transboundary air pollutants (TAPs) transported from China to Tokyo using the Pb₍₀.₅<Dₚ < ₁₎/Cu₍₂.₅<Dₚ < ₁₀₎ index. We conducted intensive observations over four seasons during 2014–2015 and analyzed ionic components and thirteen elements in size-segregated aerosols collected at the top of a 30-m-high tower in a hilly forested area of the Field Museum Tamakyuryo (FM Tama), in a western suburb of Tokyo. In order to evaluate if the Pb₍₀.₅<Dₚ < ₁₎/Cu₍₂.₅<Dₚ < ₁₀₎ ratio can be applied in Tokyo as the megacity, the annual average concentration of Pb at Cape Hedo, Kumamoto city, on the west side of Japan, was higher than that of Pb at Tokyo, on the east side; this result indicates that TAPs affect western Japan more than eastern Japan. We inferred the main source of Cu to be braking abrasion from cars at local scale on the basis of its enrichment factor and size distribution. From the Pb₍₀.₅<Dₚ < ₁₎/Cu₍₂.₅<Dₚ < ₁₀₎ ratio and sulfate concentration, we inferred that the highest contribution of TAPs to the total mass concentration in Tokyo occurred in spring, when TAPs accounted for 55%, 72%, and 53% of the total mass concentration in the 0.1 < Dp < 0.5, 0.5 < Dp < 1, and 1 < Dp < 2.5 fractions, respectively. These results can contribute to assessment of TAPs in Tokyo.
اظهر المزيد [+] اقل [-]Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil
2021
Azeem, Muhammad | Ali, Amjad | Arockiam Jeyasundar, Parimala Gnana Soundari | Li, Yiman | Abdelrahman, Hamada | Latif, Abdul | Li, Ronghua | Basta, Nicholas | Li, Gang | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zenqqiang
Reusing by-products such as cow bones in agriculture can be achieved thorough pyrolysis. The potential of bone-derived biochar as a promising material for metals immobilization in contaminated mining soils has not yet been sufficiently explored. Therefore, cow bones were used as biochar feedstock were pyrolyzed at 500 °C (CBL) and 800 °C (CBH) and. The two biochars were applied to a mine contaminated soil at 0 (control), 2.5, 5 and 10%, w/w, dosages; then, the soils were incubated and cultivated by maize in the greenhouse. Cadmium (Cd) and zinc (Zn) bioavailability and their sequentially extracted fractions (acid soluble, reducible, oxidizable, and residual fraction), soil microbial function, and plant health attributes were analyzed after maize harvesting. Bone-derived biochar enhanced the content of dissolved organic carbon (up to 74%), total nitrogen (up to 26%), and total phosphorus (up to 27%) in the soil and improved the plant growth up to 55%, as compared to the control. The addition of CBL altered the acid soluble fraction of both metals to the residual fraction and, thus, reduced the content of Zn (55 and 40%) and Cd (57 and 67%) in the maize roots and shoots, respectively as compared to the control. The CBL enhanced the β-glucosidase (51%) and alkaline phosphatase activities (71%) at the lower doses (2.5–5%) as compared to control, while the activities of these enzymes decreased with the higher application doses. Also, CBL improved the antioxidants activity and maize growth at the 2.5–5% application rate. However, the activity of the dehydrogenase significantly decreased (77%), particularly with CBH. We conclude that CBL, applied at 2.5–5% dose, can be utilized as a potential low cost and environmental friendly amendment for stabilization of toxic metals in contaminated mining soils and producing food/feed/biofuel crops with lower metal content.
اظهر المزيد [+] اقل [-]Personal exposure to PM2.5 in five commuting modes under hazy and non-hazy conditions
2021
Peng, Li | Shen, Yanling | Gao, Wei | Zhou, Ji | Pan, Liang | Kan, Haidong | Cai, Jing
Effective reducing exposure to fine particulate matter (PM₂.₅) during commuting can help lower the risk of adverse health effects therefrom; however, few studies have examined the influence of different background levels of air pollution—particularly in China where PM₂.₅ concentrations are high globally. In this study, personal sampling was conducted to measure individual exposure during five different modes of commuting (bus, metro, car, bicycle and walking) in Shanghai, China. A total of 125 measurements were conducted for five days under haze and non-haze conditions, following which the corresponding doses of PM₂.₅ inhaled were estimated. The mean concentrations (±standard deviation, SD, 1-min averaging) of background PM₂.₅ were 155.9 (±98.7) μg/m³ during haze and 36.3 (±17.6) μg/m³ under the non-haze conditions. Under both conditions, active commuters were exposed to higher PM₂.₅ concentrations than those using motorized commuting modes (Wilcoxon test, p < 0.01). Moreover, driving with closed windows and air conditioning effectively reduces the PM₂.₅ concentrations in cars by 35 %–57 %. Cyclists inhaled the highest doses (539.8 ± 313.2 and 134.8 ± 71.3 μg/h under haze and non-haze conditions, respectively), whereas car drivers inhaled the lowest doses (28.8 ± 21.2 and 3.7 ± 2.6 μg/h under haze and non-haze conditions, respectively). Individual exposure to PM₂.₅ during commuting varied with the modes; the discrepancy between the latter depended largely on the ambient concentration. Our findings provided evidence that traffic-related air pollution contributed to daily pollutant exposure and highlighted the importance of taking personal protective measures while commuting, particularly during haze.
اظهر المزيد [+] اقل [-]Roads with underlying tar asphalt - spreading, bioavailability and toxicity of their polycyclic aromatic hydrocarbons
2021
Kumpiene, Jurate | Larsson, Martin Oscar | Carabante, Ivan | Arp, Hans Peter H.
Some of the older Swedish roads contain road tar underneath a surface layer of bituminous asphalt. This road tar, also known as tar asphalt, contains large amounts of polycyclic aromatic hydrocarbons (PAHs). There is concern about PAHs spreading from the bottom layers of these older roads to the surrounding environment, and that because of this spreading road tar asphalt should not be recycled but rather placed in landfills. However, a risk assessment of PAH spreading below roads has not yet been conducted. The first aim of this study was to assess this potential spreading of PAHs from underlying tar asphalt to the sand beneath, the soil next to the roads, as well as nearby groundwater. The second aim was to measure the bioavailability and estimate the toxicity of PAHs in all relevant media using polyoxymethylene (POM) passive samplers. Four road sections and nearby groundwater in northern Sweden were investigated, including a control road without tar asphalt. PAHs were detected in all analysed solid media at varying concentrations: in asphalt from 2.3 to 4800 mg kg⁻¹, in underlying sand from <1.5 to 460 mg kg⁻¹ and in slope soil from <1.5 to 36 mg kg⁻¹. However, the spread of PAHs from the asphalt to roadside soil and groundwater was very limited. Groundwater at most of the road sections contained very low or non-detectable levels of PAHs (<0.08–0.53 μg L⁻¹, excluding one site where fuel contamination is hypothesized). The PAHs generally showed low bioavailability. Only asphalt with PAH content >1200 mg kg⁻¹ exhibited bioavailable concentrations that exceeded threshold concentrations for serious risk. The most PAH contaminated sand and soil samples exhibited low toxicity when considering bioavailability, only in some cases exceeding chronic toxicity threshold concentrations. These results were compared with the Swedish EPA's guideline values for PAH in contaminated soil, which is shown to overpredict toxicity for these sites. Further research on the leaching and transportation processes of PAHs from subsurface tar asphalt is recommended for developing risk analysis approaches.
اظهر المزيد [+] اقل [-]Prediction of hydrophobic organic compound partition to algal organic matter through the growth cycle of Microcystis aeruginosa
2021
Wei, Peiyun | Fu, Heyun | Xu, Zhaoyi | Zhu, Dongqiang | Qu, Xiaolei
Algal organic matter (AOM) is an important source for the dissolved organic matter (DOM) pool in aquatic systems, particularly in eutrophic waters. In this study, we reported the dynamic pattern of AOM hydrophobicity during the growth cycle of Microcystis aeruginosa using the partition coefficients of AOM in the aqueous two-phase system (KATPS) as a simple quantitative measure. AOM hydrophobicity had significant and non-monotonic changes during the growth cycle. It increased in the lag and early exponential phases, then decreased in the late exponential and stationary phases, and rebounded in the decline phase. AOM hydrophobicity determined using the resin fractionation, SUVA₂₅₄, and nuclear magnetic resonance methods shared similar non-monotonic pattern. Nevertheless, the correlations among these indicators were poor. The partition behavior of polycyclic aromatic hydrocarbons and chlorobenzenes to AOM was assessed based the KATPS dataset and the two-phase system (TPS) model. The TPS model showed good prediction power for the partition behavior of AOM with an RMSE of 0.23, suggesting that it was applicable to AOM from Microcystis aeruginosa. Our results indicate that algae activity will influence the overall hydrophobicity of the DOM pool depending on the growth phase, resulting in changes in the bioavailability of hydrophobic organic compounds in aquatic systems.
اظهر المزيد [+] اقل [-]Characterization and emission factors of carbonaceous aerosols originating from coke production in China
2021
Mu, Ling | Li, Xuemei | Liu, Xiaofeng | Bai, Huiling | Peng, Lin | Li, Yangyong | Tian, Mei | Zheng, Lirong
Coking is a substantial source of carbonaceous aerosols in China, but the emission characteristics and pollution levels of coking-produced organic carbon (OC) and elemental carbon (EC) remain unknown, causing considerable uncertainty in emission estimates. In this study, the emission factors of OC (EFOC) and EC (EFEC) of typical coking plants in Shanxi, China, were measured. The measured EFEC and EFOC from fugitive emissions (7.43 and 9.54 g/t) were significantly higher than those from flue gas (1.67 and 3.71 g/t). The technological conditions of coke production affect the emissions of OC and EC. For example, the total emissions from coke plants that use 3.2-m-high coke ovens were greater than those from plants that use 4.3- and 6-m-high ovens. The EFOC and EFEC for plants conducting stamp charging were considerably higher than those for plants using top charging. The stable carbon isotopes of total carbon (δ¹³CTC), OC (δ¹³COC), and EC (δ¹³CEC) for fly ash during coking were −23.74‰ to −24.17‰, −23.32‰ to −23.87‰, and −23.84‰ to −24.14‰, respectively, and no clear isotopic fractionation was found during coke production. Different EC/OC ratios from different emission pathways and the carbon isotope signature of coke production should be considered when investigating the sources of carbonaceous aerosols. The total estimated EC and OC emissions from coke production in China were 3.93 and 5.72 Gg in 2017, and Shanxi, Hebei, and Shaanxi made the largest contributions.
اظهر المزيد [+] اقل [-]Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults
2021
PM₂.₅ (particulate matter ≤2.5 μm in aerodynamic diameter) is a major urban air pollutant worldwide. Its effects on the respiratory system of the susceptible population have been less characterized. This study aimed to estimate the association of short-term PM₂.₅ exposure with respiratory outcomes of the retired adults, and to examine whether these associations were stronger among the subjects with GSTT-null genotype. 32 healthy subjects (55–77 years) were recruited for five follow-up examinations. Ambient concentrations of PM₂.₅ were monitored consecutively for 7 days prior to physical examination. Pulmonary outcomes including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV₁), peak expiratory flow (PEF), and fractional exhaled nitric oxide (FeNO), and nasal fluid concentrations of 8-epi-prostaglandin F2 alpha (8-epi-PGF2α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and IL-1β were measured. A linear mixed-effect model was introduced to evaluate the associations of PM₂.₅ concentrations with respiratory outcomes. Additionally, GSTT1 genotype-based stratification was performed to characterize modification on PM₂.₅-related respiratory outcomes. We found that a 10 μg/m³ increase in PM₂.₅ was associated with decreases of 0.52 L (95% confidence interval [CI]: -1.04, -0.002), 0.64 L (95% CI: -1.13, -0.16), 0.1 (95% CI: -0.23, 0.04) and 2.87 L/s (95% CI: -5.09, -0.64) in FVC, FEV₁, FEV₁/FVC ratio and PEF at lag 2, respectively. Meanwhile, marked increases of 80.82% (95% CI: 5.13%, 156.50%) in IL-8, 77.14% (95% CI: 1.88%, 152.40%) in IL-1β and 67.87% (95% CI: 14.85%, 120.88%) in 8-epi-PGF2α were observed as PM₂.₅ concentration increased by 10 μg/m³ at lag 2. Notably, PM₂.₅-associated decreases in FVC and PEF and increase in FeNO were stronger among the subjects with GSTT1-null genotype. In summary, short-term exposure to PM₂.₅ is associated with nasal inflammation, oxidative stress and lung function reduction in the retired subjects. Lung function reduction and inflammation are stronger among the subjects with GSTT1-null genotype.
اظهر المزيد [+] اقل [-]