خيارات البحث
النتائج 1491 - 1500 من 7,214
Tracing out the effect of transportation infrastructure on NO2 concentration levels with Kernel Density Estimation by investigating successive COVID-19-induced lockdowns
2022
Kovács, Kamill Dániel | Haidu, Ionel
This study aims to investigate the effect of transportation infrastructure on the decrease of NO₂ air pollution during three COVID-19-induced lockdowns in a vast region of France. For this purpose, using Sentinel-5P satellite data, the relative change in tropospheric NO₂ air pollution during the three lockdowns was calculated. The estimation of regional infrastructure intensity was performed using Kernel Density Estimation, being the predictor variable. By performing hotspot–coldspot analysis on the relative change in NO₂ air pollution, significant spatial clusters of decreased air pollution during the three lockdowns were identified. Based on the clusters, a novel spatial index, the Clustering Index (CI) was developed using its Coldspot Clustering Index (CCI) variant as a predicted variable in the regression model between infrastructure intensity and NO₂ air pollution decline. The analysis revealed that during the three lockdowns there was a strong and statistically significant relationship between the transportation infrastructure and the decline index, CCI (r = 0.899, R² = 0.808). The results showed that the largest decrease in NO₂ air pollution was recorded during the first lockdown, and in this case, there was the strongest inverse correlation with transportation infrastructure (r = −0.904, R² = 0.818). Economic and population predictors also explained with good fit the decrease in NO₂ air pollution during the first lockdown: GDP (R² = 0.511), employees (R² = 0.513), population density (R² = 0.837). It is concluded that not only economic-population variables determined the reduction of near-surface air pollution but also the transportation infrastructure. Further studies are recommended to investigate other pollutant gases as predicted variables.
اظهر المزيد [+] اقل [-]Quinolone antibiotics enhance denitrifying anaerobic methane oxidation in Wetland sediments: Counterintuitive results
2022
Zhao, Yuewen | Jiang, Hongchen | Wang, Xiuyan | Liu, Changli | Yang, Yuqi
Denitrifying anaerobic methane oxidation (DAMO) plays an important role in the element cycle of wetlands. In recent years, the content of antibiotics in wetlands has gradually increased due to human activities. However, the impact of antibiotics on the ecological function of DAMO remains unclear. Here we studied the influence of three high-content quinolone antibiotics (QNs) on DAMO in the sediments of the Baiyangdian Wetland. The results show that QNs can significantly promote the potential DAMO rates. Moreover, the enhancement of potential DAMO rates is positively correlated with the dosage of QNs. This promotion effect of QNs on nitrate-DAMO can be attributed to the hormesis phenomenon or their inhibition of substrate competitors. As antibacterial agents, QNs inhibit nitrite-DAMO conducted by bacteria, but greatly promote nitrate-DAMO conducted by archaea. These results suggest that the short-term effect of QNs on DAMO in wetlands is promotion rather than inhibition.
اظهر المزيد [+] اقل [-]Fishing in troubled waters: Limited stress response to natural and synthetic microparticles in brown shrimp (Crangon crangon)
2022
Korez, Špela | Gutow, Lars | Saborowski, Reinhard
Marine invertebrates inhabiting estuaries and coastal areas are exposed to natural suspended particulate matter (SPM) like clay or diatom shells but also to anthropogenic particles like microplastics. SPM concentrations may reach 1 g per liter and more, comprising hundreds of millions of items in the size range of less than 100 μm. Suspension feeders and deposit feeders involuntarily ingest these particles along with their food. We investigated whether natural and anthropogenic microparticles at concentrations of 20 mg L⁻¹, which correspond to natural environmental SPM concentrations in coastal marine waters, are ingested by the brown shrimp Crangon crangon and whether these particles induce an oxidative stress response in digestive gland tissue. Shrimp were exposed to clay, silica, TiO₂, polyvinyl chloride (PVC), or polylactide microplastics (PLA) for 6, 12, 24, and 48 h, respectively. The activities of the anti-oxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured. All five particle types were ingested by the shrimp along with food. The presence of the particles in the shrimp stomach was verified by scanning electron microscopy. The activities of the anti-oxidative enzymes did not vary between animals exposed to different types of microparticles and control animals that did not receive particles. The temporal activity differed between the three enzymes. The lack of a specific biochemical response may reflect an adaptation of C. crangon to life in an environment where frequent ingestion of non-digestible microparticles is unavoidable and continuous maintenance of inducible biochemical defense would be energetically costly. Habitat characteristics as well as natural feeding habits may be important factors to consider in the interpretation of hazard and species-specific risk assessment.
اظهر المزيد [+] اقل [-]Isolation, characterization and industrial application of a Cladosporium herbarum fungal strain able to degrade the fungicide imazalil
2022
Papazlatani, Christina V. | Kolovou, Maria | Gkounou, Elisabeth E. | Azis, Konstantinos | Mavriou, Zografina | Testembasis, Stefanos | Karaoglanidis, George S. | Ntougias, Spyridon | Karpouzas, Dimitrios G.
Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L⁻¹ of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L⁻¹). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.
اظهر المزيد [+] اقل [-]In-situ biochar amendment mitigates dietary risks of heavy metals and PAHs in aquaculture products
2022
Chen, Yiqin | Su, Junrong | Zhao, Hanyin | Li, Juan-Ying | Wang, Jian | Wang, Qian | Yin, Jie | Jin, Ling
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are two common contaminant groups of concern in aquaculture products. While biochar amendment can be one of the solutions to immobilize these contaminant in pond sediment, its in situ effectiveness in mitigating the bioavailability, tissue residue, and dietary risk of these contaminants is yet to be tested. In this study, we added wheat straw biochar in sediments of three aquaculture ponds with polyculture of fish and shrimps and employed passive sampling techniques (i.e., diffusive gradient in thin film for HMs and polydimethylsiloxane for PAHs) to assess the diffusion flux and bioavailability throughout the culturing cycle. Reduction in HM concentrations in organisms by biochar after 28 weeks ranged from 17% to 65% for benthic organisms and from 6.0% to 47% for fish. ΣTHQs values of HMs dropped from 2.5 to 2.1 and 1.2 to 0.91 for the two organisms with the initial ΣTHQs value above 1.0. The decrease rates of both the concentrations and ΣTHQs values followed the order of Cu > Cr > Pb > Cd, which was closely correlated with the speciation of HMs in the sediments. ΣPAHs values dropped significantly at the growth stage (20ᵗʰ week) and the mature stage (28ᵗʰ week), and, on average, by 34% across all the organisms. Carcinogenic PAHs in aquaculture products decreased dramatically at the seedling stage (12ᵗʰ week), while there was no significant change observed for the Incremental Lifetime Cancer Risk values. By comparing the freely-dissolved concentrations in pore water of sediments and the overlying water, consistently enhanced diffusion fluxes of HMs and PAHs from water to sediment over the whole culturing cycle were obtained. Our results demonstrated the in situ applicability of biochar amendment to remediating chemical pollution in aquaculture environment and safeguarding quality of aquatic products.
اظهر المزيد [+] اقل [-]Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition
2022
Balzani, Paride | Galeotti, Giorgia | Scheggi, Sara | Masoni, Alberto | Santini, Giacomo | Baracchi, David
The massive use of plastic has contributed to huge quantities of hazardous refuse at a global scale and represents one of the most prominent issues of the Anthropocene. Microplastics (MPs) have been detected in almost all environments and pose a potential threat to a variety of plant and animal species. Many studies have reported a variety of effects, from negligible to detrimental, of MPs to aquatic organisms. Conversely, much less is known about their effect on terrestrial biota, and particularly on animal behavior and cognition. We assessed the oral toxicity of polyethylene (PE) MPs at three different concentrations (0.5, 5, and 50 mg L⁻¹), and at different timescales (1 day and 7 days of exposure) and tested for their effects on survival, food intake, sucrose responsiveness, habituation to sucrose and appetitive olfactory learning and memory in the honey bee Apis mellifera. We found that workers were not completely unaffected by acute and prolonged ingestion of this polymer. A significant effect of PE on bee mortality was found for the highest concentration but not for lower ones. PE affected feeding behavior in a concentration-dependent manner, with bees consuming more food than controls when exposed to low concentration PE. Regarding our behavioral and cognitive experiments, the high concentration PE was found to affect only bees’ ability to respond consistently to sucrose but not sucrose sensitivity, habituation to sucrose or learning and memory abilities, even for prolonged exposure to PE. While these last results may look somewhat encouraging, we discussed why caution is warranted before ruling out the possibility that PE particles at environmental concentrations are harmful to honey bees.
اظهر المزيد [+] اقل [-]Decrease in life expectancy due to COVID-19 disease not offset by reduced environmental impacts associated with lockdowns in Italy
2022
Rugani, Benedetto | Conticini, Edoardo | Frediani, Bruno | Caro, Dario
The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020. Results show a general decrease (by ∼5% on average) of the LCA midpoint impact categories (global warming, stratospheric ozone depletion, fine particulate matter formation, etc.) over the entire year 2020 when compared to past years. These avoided impacts, mainly due to reductions in fossil energy consumptions, are meaningful during the first lockdown phase between March and May 2020 (by ∼21% on average). Regarding the LCA endpoint damage on human health, ∼66 Disability Adjusted Life Years (DALYs) per 100,000 inhabitants are estimated to be saved. The analysis shows that the magnitude of the officially recorded casualties is substantially larger than the estimated gains in human lives due to the environmental impact reductions. Future research could therefore investigate the complex cause-effect relationships between the deaths occurred in 2020 imputed to COVID-19 disease and co-factors other than the SARS-CoV-2 virus.
اظهر المزيد [+] اقل [-]Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission
2022
Ye, Jinyu | Gao, Huan | Wu, Junkang | Yang, Guangping | Duan, Lijie | Yu, Ran
The extensive use of nano-TiO₂ has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N₂O emissions after long-term nano-TiO₂ exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO₂ on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO₂ exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N₂O emissions unexpectedly increased. The promoted N₂O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N₂O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO₂ from the influent, the nitrogen transformation efficiencies and the N₂O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
اظهر المزيد [+] اقل [-]Does eutrophication enhance greenhouse gas emissions in urbanized tropical estuaries?
2022
Nguyen, An Truong | Némery, Julien | Gratiot, Nicolas | Dao, Thanh-Son | Le, Tam Thi Minh | Baduel, Christine | Garnier, Josette
Estuaries are considered as important sources of the global emission of greenhouse gases (GHGs). Urbanized estuaries often experience eutrophication under strong anthropogenic activities. Eutrophication can enhance phytoplankton abundance, leading to carbon dioxide (CO₂) consumption in the water column. Only a few studies have evaluated the relationship between GHGs and eutrophication in estuaries. In this study, we assessed the concentrations and fluxes of CO₂, methane (CH₄) and nitrous oxide (N₂O) in combination with a suite of biogeochemical variables in four sampling campaigns over two years in a highly urbanized tropical estuary in Southeast Asia (the Saigon River Estuary, Vietnam). The impact of eutrophication on GHGs was evaluated through several statistical methods and interpreted by biological processes. The average concentrations of CO₂, CH₄ and N₂O at the Saigon River in 2019–2020 were 3174 ± 1725 μgC-CO₂ L⁻¹, 5.9 ± 16.8 μgC-CH₄ L⁻¹ and 3.0 ± 4.8 μgN-N₂O L⁻¹, respectively. Their concentrations were 13–18 times, 52–332 times, and 9–37 times higher than the global mean concentrations of GHGs, respectively. While CO₂ concentration had no clear seasonal pattern, N₂O and CH₄ concentrations significantly differed between the dry and the rainy seasons. The increase in eutrophication status along the dense urban area was linearly correlated with the increase in GHGs concentrations. The presence of both nitrification and denitrification resulted in elevated N₂O concentrations in this urban area of the estuary. The high concentration of CO₂ was contributed by the high concentration of organic carbon and mineralization process. GHGs fluxes at the Saigon River Estuary were comparable to other urbanized estuaries regardless of climatic condition. Control of eutrophication in urbanized estuaries through the implantation of efficient wastewater treatment facilities will be an effective solution in mitigating the global warming potential caused by estuarine emissions.
اظهر المزيد [+] اقل [-]Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis
2022
Qiu, Yifei | Zhou, Shenglu | Zhang, Chuchu | Su, San | Qin, Wendong
The soil environment serves as an assembling area for microplastics, and is an important secondary source of microplastics in other environmental media. Recently, soil microplastics have been extensively studied; however, high variability is observed among the research results owing to different soil properties, and the complexity of soil microplastic composition. The present study amassed the findings of 2886 experimental groups, across 38 studies from 2016 to 2022, and used meta-analysis to quantitatively analyze the differences in the effects of microplastic exposure on soil physicochemical properties and biota. The results showed that among the existing soil microplastic research, agricultural soils maintained a higher environmental exposure distribution than other environments. Microplastic fibers and fragments were the predominant shapes, indicating that the extensive use of agricultural films are the primary influencing factor of soil microplastic pollution at present. The results of the meta-analysis found that microplastic exposure had a significant negative effect on soil bulk density (lnRR = −0.04) and aggregate stability (lnRR = −0.085), indicating that microplastics may damage the integrity of soil structure or damage the soil surface. The significant changes in plant root biomass and soil phosphatase further signified the potential impact of microplastics on soil nutrient and geochemical element cycling. We further constructed species sensitivity distribution curves, revealing that invertebrates had a higher species sensitivity to microplastics, as they can pass through the gut wall of soil nematodes, causing oxidative stress and affecting gene expression. In general, soil is an interconnected complex, and microplastic exposure can directly or indirectly interact with environmental chemical processes in the soil environment, potentially harming the soil ecosystem; however, current research remains insufficient with respect to breadth and depth in terms of the comprehensive “source-sink” mechanism of soil microplastics, the hazard of exposure, and the overall toxic effects.
اظهر المزيد [+] اقل [-]